20 research outputs found

    Auditory sensory memory and working memory skills : Association between frontal MMN and performance scores

    Get PDF
    Objective: Memory is the faculty responsible for encoding, storing and retrieving information, comprising several sub-systems such as sensory memory (SM) and working memory (WM). Some previous studies exclusively using clinical population revealed associations between these two memory systems. Here we aimed at investigating the relation between modality-general WM performance and auditory SM formation indexed by magnetic mismatch negativity (MMN) responses in a healthy population of young adults. Methods: Using magnetoencephalography (MEG), we recorded MMN amplitudes to changes related to six acoustic features (pitch, timbre, location, intensity, slide, and rhythm) inserted in a 4-tone sequence in 86 adult participants who were watching a silent movie. After the MEG recordings, participants were administered the WM primary subtests (Spatial Span and Letter Number Sequencing) of Wechsler Memory Scale (WMS). Results: We found significant correlations between frontal MMN amplitudes to intensity and slide deviants and WM performance. In case of intensity, the relation was revealed in all participants, while for slide only in individuals with a musical background. Conclusions: Automatic neural responses to auditory feature changes are increased in individuals with higher visual WM performance. Significance: Conscious WM abilities might be linked to pre-attentive sensory-specific neural skills of prediction and short-term storage of environmental regularities. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    Whole-brain computation of cognitive versus acoustic errors in music : A mismatch negativity study

    Get PDF
    Previous studies have evidenced how the local prediction of physical stimulus features may affect the neural processing of incoming stimuli. Less known are the effects of cognitive priors on predictive processes, and how the brain computes local versus cognitive predictions and their errors. Here, we determined the differential brain mechanisms underlying prediction errors related to high-level, cognitive priors for melody (rhythm, contour) versus low-level, local acoustic priors (tuning, timbre). We measured with magnetoencephalography the mismatch negativity (MMN) prediction error signal in 104 adults having varying levels of musical expertise. We discovered that the brain regions involved in early predictive processes for local priors were primary and secondary auditory cortex and insula, whereas cognitive brain regions such as cingulate and orbitofrontal cortices were recruited for early melodic errors in cognitive priors. The involvement of higher-level brain regions for computing early cognitive errors was enhanced in musicians, especially in cingulate cortex, inferior frontal gyrus, and supplementary motor area. Overall, the findings expand knowledge on whole-brain mechanisms of predictive processing and the related MMN generators, previously mainly confined to the auditory cortex, to a frontal network that strictly depends on the type of priors that are to be computed by the brain.Peer reviewe

    МОДЕРНІЗАЦІЯ ОСВІТНЬОГО ПРОЦЕСУ НА КАФЕДРІ ГІСТОЛОГІЇ, ЦИТОЛОГІЇ ТА ЕМБРІОЛОГІЇ

    Get PDF
    In the context of the implementation of major educational programs under the Bologna Process gets a an interactive technology teaching significant place. The article, using the system analysis, questionnaires and interviews with students and teachers studied modern methods of teaching, which are being implemented in the educational process at the Department of Histology, Cytology and Embryology of ZSMU. The proposed interactive methods create a comfortable learning environment in which students feel their success, intellectual consistency, making productive learning process itself.// o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[\S\s]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return "ojs.tdmu.edu.ua"},p=function(){var w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;eВ умовах реалізації основних освітніх програм у рамках Болонського процесу важливе місце набуває інтерактивна технологія викладання. У статті за допомогою системного аналізу, анкетування та опитування студентів і викладачів досліджено сучасні методики викладання дисципліни, які впроваджуються в освітній процес на кафедрі гістології, цитології та ембріології ЗДМУ. Запропоновані інтерактивні методи створюють комфортні умови навчання, за яких студент відчуває свою успішність, інтелектуальну спроможність, що робить більш продуктивним сам процес навчання. // o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[\S\s]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return "ojs.tdmu.edu.ua"},p=function(){var w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;

    Noise sensitivity and musical background

    Get PDF
    Noise sensitive individuals have a predisposition to attend to sounds and to perceive them negatively. Noise sensitivity predicts noise annoyance. The aim of this study was to investigate if noise sensitivity is associated with musical background. A total of 197 participants were recruited in Finland (N=91; 44 men, 47 women) and in Italy (N=106; 10 men, 96 women). The age range was from 19 to 56 years (M = 28.57, SD = 7.93 for Finland; M = 24.71, SD = 8.01 for Italy). We administered questionnaires and listening tests both online and in the laboratory, focusing on musical background. Noise sensitivity was studied using the Weinstein's Noise Sensitivity Scale administered online. The subjects were divided into 3 groups according to their musical experience. The groups were non-musicians (N = 103), amateur musicians (N = 44) and musicians (N = 50). Non-musicians, amateurs and musicians did not differ significantly from each other in noise sensitivity. This finding hence does not relate noise sensitivity with a history of long-term exposure to music. Copyright ©(2015) by EAA-NAG-ABAV, ISSN2226-5147 All rights reservedNon peer reviewe

    A window into the brain mechanisms associated with noise sensitivity

    No full text
    Noise sensitive individuals are more likely to experience negative emotions from unwanted sounds and they show greater susceptibility to adverse effects of noise on health. Noise sensitivity does not originate from dysfunctions of the peripheral auditory system, and it is thus far unknown whether and how it relates to abnormalities of auditory processing in the central nervous system. We conducted a combined electroencephalography and magnetoencephalography (M/EEG) study to measure neural sound feature processing in the central auditory system in relation to the individual noise sensitivity. Our results show that high noise sensitivity is associated with altered sound feature encoding and attenuated discrimination of sound noisiness in the auditory cortex. This finding makes a step towards objective measures of noise sensitivity instead of self-evaluation questionnaires and the development of strategies to prevent negative effects of noise on the susceptible population

    Applying acoustical and musicological analysis to detect brain responses to realistic music: A case study

    No full text
    Music information retrieval (MIR) methods offer interesting possibilities for automatically identifying time points in music recordings that relate to specific brain responses. However, how the acoustical features and the novelty of the music structure affect the brain response is not yet clear. In the present study, we tested a new method for automatically identifying time points of brain responses based on MIR analysis. We utilized an existing database including brain recordings of 48 healthy listeners measured with electroencephalography (EEG) and magnetoencephalography (MEG). While we succeeded in capturing brain responses related to acoustical changes in the modern tango piece Adios Nonino, we obtained less reliable brain responses with a metal rock piece and a modern symphony orchestra musical composition. However, brain responses might also relate to the novelty of the music structure. Hence, we added a manual musicological analysis of novelty in the musical structure to the computational acoustic analysis, obtaining strong brain responses even to the rock and modern pieces. Although no standardized method yet exists, these preliminary results suggest that analysis of novelty in music is an important aid to MIR analysis for investigating brain responses to realistic music

    Brain predictive coding processes are associated to COMT gene Val158Met polymorphism

    Get PDF
    Predicting events in the ever-changing environment is a fundamental survival function intrinsic to the physiology of sensory systems, whose efficiency varies among the population. Even though it is established that a major source of such variations is genetic heritage, there are no studies tracking down auditory predicting processes to genetic mutations. Thus, we examined the neurophysiological responses to deviant stimuli recorded with magnetoencephalography (MEG) in 108 healthy participants carrying different variants of Val158Met single-nucleotide polymorphism (SNP) within the catechol-O-methyltransferase (COMT) gene, responsible for the majority of catecholamines degradation in the prefrontal cortex. Our results showed significant amplitude enhancement of prediction error responses originating from the inferior frontal gyrus, superior and middle temporal cortices in heterozygous genotype carriers (Val/Met) vs homozygous (Val/Val and Met/Met) carriers. Integrating neurophysiology and genetics, this study shows how the neural mechanisms underlying optimal deviant detection vary according to the gene-determined cathecolamine levels in the brain.Peer reviewe

    Risk of depression enhances auditory Pitch discrimination in the brain as indexed by the mismatch negativity

    No full text
    Objective Depression is a state of aversion to activity and low mood that affects behaviour, thoughts, feelings and sense of well-being. Moreover, the individual depression trait is associated with altered auditory cortex activation and appraisal of the affective content of sounds. Methods Mismatch negativity responses (MMNs) to acoustic feature changes (pitch, timbre, location, intensity, slide and rhythm) inserted in a musical sequence played in major or minor mode were recorded using magnetoencephalography (MEG) in 88 subclinical participants with depression risk. Results We found correlations between MMNs to slide and pitch and the level of depression risk reported by participants, indicating that higher MMNs correspond to higher risk of depression. Furthermore we found significantly higher MMN amplitudes to mistuned pitches within a major context compared to MMNs to pitch changes in a minor context. Conclusions The brains of individuals with depression risk are more responsive to mistuned and fast pitch stimulus changes, even at a pre-attentive level. Significance Considering the altered appraisal of affective contents of sounds in depression and the relevance of spectral pitch features for those contents in music and speech, we propose that individuals with subclinical depression risk are more tuned to tracking sudden pitch changes

    Neuroanatomical substrate of noise sensitivity

    No full text
    Recent functional studies suggest that noise sensitivity, a trait describing attitudes towards noise and predicting noise annoyance, is associated with altered processing in the central auditory system. In the present work, we examined whether noise sensitivity could be related to the structural anatomy of auditory and limbic brain areas. Anatomical MR brain images of 80 subjects were parcellated with FreeSurfer to measure grey matter volume, cortical thickness, cortical area and folding index of anatomical structures in the temporal lobe and insular cortex. The grey matter volume of amygdala and hippocampus was measured as well. According to our findings, noise sensitivity is associated with the grey matter volume in the selected structures. Among those, we propose and discuss particular areas, previously linked to auditory perceptual, emotional and interoceptive processing, in which larger grey matter volume seems to be related to higher noise sensitivity
    corecore