12 research outputs found

    Cross-borehole tomography with full-decay spectral time-domain induced polarization for mapping of potential contaminant flow-paths

    Get PDF
    Soil contamination from industrial activities is a large problem in urban areas worldwide. Understanding the spreading of contamination to underlying aquifers is crucial to make adequate risk assessments and for designing remediation actions. A large part of the northern hemisphere has quaternary deposits consisting of glacial clayey till. The till often has a complex hydrogeological structure consisting of networks of fractures, sand stringers and sand lenses that each contribute to a transport network for water, free phase and dissolved contaminants. Thus, to determine the possible flow-paths of contaminants, the geology must be described in great detail. Normally, multiple boreholes would be drilled in order to describe the geology, but boreholes alone do not provide the needed resolution to map such sand lenses and their connectivity. Cross-borehole full-decay time-domain induced polarization (TDIP) is a new tool that allows for quantitatively mapping not only contrasts in bulk resistivity, but also contrasts in spectral IP parameters. We present a feasibility study with synthetic tests and a field application on a clayey moraine environment with embedded sand lenses, with hitherto unseen ground-truth verification. Indeed, the investigated area was above the water table, which allowed for digging out the entire area after the investigation for an unprecedented description of the lens interconnectivity. The TDIP data were acquired with a full-waveform acquisition at high sampling rate, signal-processed by harmonic denoising, background removal, and de-spiking, and subsequently the full-waveform data were stacked in log-increasing tapered gates (with 7 gates per decade). The resulting TDIP decays, with usable time-gates as early as two milliseconds, were inverted in terms of a re-parameterization of the Cole-Cole model. The inverted models of the field data show a remarkable delineation of the sand lenses/layers at the site, with structure in both the resistivity and the IP parameters matching the results from the ground-truthing. The synthetic examples show that in models both below and above the groundwater table, sand-lenses with thicknesses comparable to the vertical electrode spacing can be well resolved. This suggests that full-decay cross-borehole TDIP is an ideal tool for high-resolution sand-lens imaging

    Faults and fractures in central West Greenland: onshore expression of continental break-up and sea-floor spreading in the Labrador – Baffin Bay Sea

    No full text
    The complex Ungava fault zone lies in the Davis Strait and separates failed spreading centres in the Labrador Sea and Baffin Bay. This study focuses on coastal exposures east of the fault-bound Sisimiut basin, where the onshore expressions of these fault systems and the influence of pre-existing basement are examined. Regional lineament studies identify five main systems: N–S, NNE–SSW, ENE–WSW, ESE–WNW and NNW–SSE. Field studies reveal that strike-slip movements predominate, and are consistent with a ~NNE–SSW-oriented sinistral wrench system. Extensional faults trending N–S and ENE–WSW (basement-parallel), and compressional faults trending E–W, were also identified. The relative ages of these fault systems have been interpreted using cross-cutting relationships and by correlation with previously identified structures. A two-phase model for fault development fits the development of both the onshore fault systems observed in this study and regional tectonic structures offshore. The conclusions from this study show that the fault patterns and sense of movement on faults onshore reflect the stress fields that govern the opening of the Labrador Sea – Davis Strait – Baffin Bay seaway, and that the wrench couple on the Ungava transform system played a dominant role in the development of the onshore fault patterns
    corecore