51 research outputs found

    Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>STEVOR proteins, encoded by the multicopy <it>stevor </it>gene family have no known biological functions. Their expression and unique locations in different parasite life cycle stages evoke multiple functionalities. Their abundance and hypervariability support a role in antigenic variation.</p> <p>Methods</p> <p>Immunoblotting of total parasite proteins with an anti-STEVOR antibody was used to identify variant antigens of this gene family and to follow changes in STEVOR expression in parasite populations panned on CSA or CD36 receptors. Immunofluorescence assays and immunoelectron microscopy were performed to study the subcellular localization of STEVOR proteins in different parasite stages. The capacity of the antibody to inhibit merozoite invasion of erythrocytes was assessed to determine whether STEVOR variants were involved in the invasion process.</p> <p>Results</p> <p>Antigenic variation of STEVORs at the protein level was observed in blood stage parasites. STEVOR variants were found to be present on the merozoite surface and in rhoptries. An insight into a participation in erythrocyte invasion was gained through an immunofluorescence analysis of a sequence of thin slides representing progressive steps in erythrocyte invasion. An interesting feature of the staining pattern was what appeared to be the release of STEVORs around the invading merozoites. Because the anti-STEVOR antibody did not inhibit invasion, the role of STEVORs in this process remains unknown.</p> <p>Conclusion</p> <p>The localization of STEVOR proteins to the merozoite surface and the rhoptries together with its prevalence as a released component in the invading merozoite suggest a role of these antigens in adhesion and/or immune evasion in the erythrocyte invasion process. These observations would also justify STEVORs for undergoing antigenic variation. Even though a role in erythrocyte invasion remains speculative, an association of members of the STEVOR protein family with invasion-related events has been shown.</p

    A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in Deinococcus radiodurans

    Get PDF
    In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA

    Diverse Expression Patterns of Subgroups of the rif Multigene Family during Plasmodium falciparum Gametocytogenesis

    Get PDF
    BACKGROUND: The maturation of Plasmodium falciparum gametocytes in the human host takes several days, during which the parasites need to efficiently evade the host immune system. Like asexual stage parasites, immature gametocytes can sequester at various sites in the human body, and only mature sexual stages are found in the circulation. Although the fundamental mechanisms of gametocyte immune evasion are still largely unknown, candidate molecules that may be involved include variant antigens encoded by multigene families in the P. falciparum genome, such as the PfEMP1, STEVOR and RIFIN proteins. While expression of the former two families in sexual stages has been investigated earlier, we report here RIFIN expression during gametocytogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Variants of two previously characterized RIFIN subfamilies (A- and B-type RIFINs) were found to be synthesized in gametocytes. Immunofluorescence experiments showed A-type RIFINs to be accumulated in a crescent-shaped pattern of discrete punctate structures at the infected erythrocyte membrane, while members of the B-type family were associated with the parasite. Transcription analysis demonstrated the existence of diverse transcriptional regulation patterns during sexual differentiation and indicated variant-specific regulation of B-type RIFINs, in contrast to group-specific regulation for A-type RIFINs. Phylogenetic analysis of 5'-upstream regions showed that the rif-gene family falls into five defined clusters, designated rups (rifupstream) A1, A2, AB, B and C. In trophozoites and early gametocytes, rif variants of the rupsA2-type were preferentially expressed. CONCLUSIONS/SIGNIFICANCE: In this work we demonstrate the expression dynamics of the rif-gene family during sexual differentiation and present indications for subgroup specific regulation patterns. Therefore, our data provide a first foundation and point to new directions for future investigations of the potential role of RIFINs in gametocyte immune evasion

    Identification of Escherichia coli DNA helicase I as the traI gene product of the F sex factor.

    No full text
    Active DNA helicase I (Mr 180,000) can be isolated from Escherichia coli F+ strains but not F- strains. The transfer of the F sex factor to F- strains by conjugation permits the purification of the enzyme from the transconjugant strains. We conclude from this that helicase I is coded for by a portion of the F factor. Results also obtained by using recombinant plasmids carrying different DNA fragments of the F factor transfer region suggest that DNA helicase I is identical to the product of traI, one of the transfer genes of the F factor
    • …
    corecore