8 research outputs found
Multi-Timescale spectra as Features for continuous Workload estimation in Realistic Settings
Der Gesamttagungsband kann hier abgerufen werden:
http://dx.doi.org/10.3217/978-3-85125-533-
Maritime cognitive workload assessment
The human factor plays the key role for safety in many industrial and civil every-day operations in our technologized world. Human failure is more likely to cause accidents than technical failure, e.g. in the challenging job of tugboat captains. Here, cognitive workload is crucial, as its excess is a main cause of dangerous situations and accidents while being highly participant and situation dependent. However, knowing the captainâs level of workload can help to improve man-machine interaction. The main contributions of this paper is a successful workload indication and a transfer of cognitive workload knowledge from laboratory to realistic settings
Pitfalls and potential of high-throughput plant phenotyping platforms
Automated high-throughput plant phenotyping (HTPP) enables non-invasive, fast and standardized evaluations of a large number of plants for size, development, and certain physiological variables. Many research groups recognize the potential of HTPP and have made significant investments in HTPP infrastructure, or are considering doing so. To make optimal use of limited resources, it is important to plan and use these facilities prudently and to interpret the results carefully. Here we present a number of points that users should consider before purchasing, building or utilizing such equipment. They relate to (1) the financial and time investment for acquisition, operation, and maintenance, (2) the constraints associated with such machines in terms of flexibility and growth conditions, (3) the pros and cons of frequent non-destructive measurements, (4) the level of information provided by proxy traits, and (5) the utilization of calibration curves. Using data from an Arabidopsis experiment, we demonstrate how diurnal changes in leaf angle can impact plant size estimates from top-view cameras, causing deviations of more than 20% over the day. Growth analysis data from another rosette species showed that there was a curvilinear relationship between total and projected leaf area. Neglecting this curvilinearity resulted in linear calibration curves that, although having a high r2 (> 0.92), also exhibited large relative errors. Another important consideration we discussed is the frequency at which calibration curves need to be generated and whether different treatments, seasons, or genotypes require distinct calibration curves. In conclusion, HTPP systems have become a valuable addition to the toolbox of plant biologists, provided that these systems are tailored to the research questions of interest, and users are aware of both the possible pitfalls and potential involved