739 research outputs found
"m=1" coatings for neutron guides
A substantial fraction of the price for a supermirror neutron guide system is the shielding, which is needed because of the gamma radiation produced as a result of neutron absorption in the supermirror layers. Traditional coatings have been made of nickel-titanium heterostructures, but Ni and Ti also have a fairly high absorption cross section for cold and thermal neutrons. We examine a number of alternatives to Ni as part of a study to reduce the gamma radiation from neutron guides. Materials such as diamond and Be have higher neutron scattering density than Ni, smaller absorption cross section, and when a neutron is absorbed they emit gamma photons with lower energies. We present reflectivity data comparing Ni with Be and preliminary results from diamond coatings showing there use as neutron guide coatings. Calculations show that Be and diamond coatings emit two orders of magnitude fewer gamma photons compared to Ni, mainly because of the lower absorption cross section
Re-evaluation of the LHC potential for the measurement of Mw
We present a study of the LHC sensitivity to the W boson mass based on
simulation studies. We find that both experimental and phenomenological sources
of systematic uncertainties can be strongly constrained with Z measurements:
the lineshape is robustly predicted, and its analysis provides an accurate
measurement of the detector resolution and absolute scale, while the
differential cross-section analysis absorbs most of the strong interaction
uncertainties. A sensitivity \delta Mw \sim 7 \MeV for each decay channel (W
--> e nu, W --> mu nu), and for an integrated luminosity of 10 fb-1, appears as
a reasonable goal
"m=1" coatings for neutron guides
A substantial fraction of the price for a supermirror neutron guide system is the shielding, which is needed because of the gamma radiation produced as a result of neutron absorption in the supermirror layers. Traditional coatings have been made of nickel-titanium heterostructures, but Ni and Ti also have a fairly high absorption cross section for cold and thermal neutrons. We examine a number of alternatives to Ni as part of a study to reduce the gamma radiation from neutron guides. Materials such as diamond and Be have higher neutron scattering density than Ni, smaller absorption cross section, and when a neutron is absorbed they emit gamma photons with lower energies. We present reflectivity data comparing Ni with Be and preliminary results from diamond coatings showing there use as neutron guide coatings. Calculations show that Be and diamond coatings emit two orders of magnitude fewer gamma photons compared to Ni, mainly because of the lower absorption cross section
- …
