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Abstract. A substantial fraction of the price for a supermirror neutron guide system is the 
shielding, which is needed because of the gamma radiation produced as a result of neutron 
absorption in the supermirror layers. Traditional coatings have been made of nickel-titanium 
heterostructures, but Ni and Ti also have a fairly high absorption cross section for cold and 
thermal neutrons. We examine a number of alternatives to Ni as part of a study to reduce the 
gamma radiation from neutron guides. Materials such as diamond and Be have higher neutron 
scattering density than Ni, smaller absorption cross section, and when a neutron is absorbed 
they emit gamma photons with lower energies. We present reflectivity data comparing Ni with 
Be and preliminary results from diamond coatings showing there use as neutron guide 
coatings. Calculations show that Be and diamond coatings emit two orders of magnitude fewer 
gamma photons compared to Ni, mainly because of the lower absorption cross section. 

1.  Introduction 
Neutron guides were introduced in 1963 [1] to increase the neutron flux at the sample position. The 
guides were evacuated to prevent the neutrons from scattering on the air molecules, and the low-
divergent neutrons hitting the neutron guide walls at low grazing angles were reflected and transported 
more efficiently. Most materials have a refractive index that is slightly below 1 for cold and thermal 
neutrons. This means that there is a critical angle, θc,	   below which there will be total external 
reflection of the neutrons, as demonstrated by Fermi and co-workers [2,3] in the mid 1940s. The 
critical angle is given by 

𝑠𝑖𝑛𝜃! = 𝜆 𝑁𝑏/𝜋 
 

where N is the atomic number density of the material and b is the average coherent neutron scattering 
length. Nb is referred to as the neutron scattering length density. Natural nickel (Ni) has one of the 
highest neutron scattering length densities of the elements in the periodic table. The critical angle for 
Ni is defined as m=1. To reflect neutrons at still higher angles than that corresponding to m=1, one 
could use the 58Ni isotope. This has a higher neutron scattering length density compared to Ni, 
equivalent to m=1.18. Another option is to use supermirrors, proposed by Mezei [4] in 1976, and 
which today can be made with m-values above m=7. The cost of Ni isotope enrichment is very high, 
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and 58Ni costs at present around 1000 USD per gram. As such, neutron guides with coatings above 
m=1 use supermirrors as the most economical option. 
Neutrons that are not reflected by the coating will be transmitted, and will be absorbed in the coating 
or in the substrate. Most neutron absorption processes cause the emission of gamma radiation, and the 
quantity and energy of the photons depend on the absorbing atom. 
The substrates for most neutron guides are made of glass that contains boron, and the products 
"borofloat" and "borkron" are common. Natural B contains 20% of the isotope 10B, which has a very 
high absorption cross section for cold and thermal neutrons. When a neutron is absorbed in 10B, the 
majority of the emitted gamma radiation is at a relatively low in energy (0.477 MeV). The other major 
components in the substrate are Si and O, which both have an absorption cross section that is many 
orders of magnitude below that of 10B. Consequently, most of the neutrons absorbed in the glass will 
be due to absorption in 10B. But before the neutrons can be absorbed by the 10B, the neutrons have to 
pass through the Ni coating. The absorption cross section for Ni is lower than for B, but large enough 
to cause substantial absorption. When a neutron is absorbed in Ni, a large part of the emitted gamma 
radiation has energies exceeding 8 MeV. 
The most common used shielding materials around neutron guides are iron, different versions of 
concrete, and sometimes lead. For all these materials, the attenuation coefficient for 0.5 MeV photons 
is higher then it is for 8 MeV photons. For lead the attenuation coefficient is 1.2 cm-1 for 0.5 MeV 
photons and 0.43 cm-1 for 8 MeV photons [5]. Therefore, to get the same decrease in gamma radiation, 
one needs nearly 3 times more material if the gamma radiation is at 8 MeV than for 0.5 MeV. 
The material with the highest neutron scattering length density in the periodic table is carbon in the 
form of diamond. Thereafter come Ni and Be, which have nearly the same scattering length density. 
Both C and Be have a very low absorption cross section compared to Ni, and when a neutron is 
absorbed both emit gamma radiation at lower photon energies than Ni. 
The coating for neutron guides is mainly produced by DC magnetron sputtering, since large areas of 
optical components can be sputtered efficiently with the quality needed. Be can also be coated using 
DC magnetron sputtering [6], but it requires special safety procedures. Be dust, which will appear in 
the coating facility during production, is a health hazard and can lead to a chronic lung disease called 
berylliosis. 
Much effort has been spend developing the manufacture of carbon layers with high number of sp3 
bindings compared to number of sp2 bindings, making coatings that are more like diamond than 
graphite. This corresponds to an increase in the mass density of the carbon coatings from 1.8 g/cm3 for 
amorphous carbon towards the 3.5 g/cm3 for diamond. This can be achieved by making coatings that 
are crystalline diamond or coatings that are amorphous but with high mass density, which are called 
diamond-like carbon (DLC). Current manufacturing processes for DLC coatings result in elevated 
concentrations of hydrogen in the coating, which reduce the total neutron scattering length density [7] 
and therefore make them less useful for coatings in neutron guides applications. DLC coatings without 
hydrogen for ultracold neutron guides have been demonstrated but these coatings have only had 60 % 
to 70 % sp3 bindings and a mass density of 2.88 g/cm3 [8]. This means that the neutron scattering 
length density is around the same as for Ni. Alternatively one can get close to 100% sp3 bindings but 
these diamond coatings are crystalline [9]. 

In this paper we will compare Be, crystalline diamond, and Ni coatings to be used as m=1 coatings 
for neutron guides. 

For the reflectivity calculation we have used IMD [10] with optical constants for neutrons from 
Neutron OPtics Scattering (NOP) [11]. To calculate the emitted gamma radiation when a neutron is 
absorbed we used MCNPX [12]. Three samples are shown to validate the concept that Ni in guides 
could be replaced by alternative materials, reducing the emitted gamma radiation as a result. 
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2.  Samples and experimental setup 
The Be coating was made by DC magnetron sputtering on a 100 mm Si wafer. The coating facility is 
normally used for coating thick (>150 µm) Be coatings [6]. The Be coating was 276 nm thick and the 
roughness of the Be surface was measured to be 0.3 nm using 8 keV (Cu kα) X-ray from a rotating 
anode.  
The diamond coating was made by CVD [9] on a 100 mm x 20 mm fused silica substrate that was 10 
mm thick. The diamond coating is on average 225 nm thick as measured by weight, but there is some 
thickness variation over the sample. The 2 mm from the edges of the samples have a thinner coating 
than the rest of the sample. The grain size was evaluated from SEM measurements to be 50 nm to 70 
nm and the roughness of the coating was measured with 8 keV X-ray to be 6 nm. The deposition 
temperature of the diamond layer was 800°C. The content of sp3 bindings is higher than 99% and the 
hydrogen content is around 2%, mainly concentrated at the grain boundaries. 
The Ni sample was made using DC magnetron sputtering, on a system with base pressure of 2*10-10 
Torr. The target was 99.995 % Ni and Ar was used as sputtering gas. The substrate was a 20 mm x 20 
mm Si sample with a thermal SiO2 layer. 
The neutron reflectivity measurements shown in this paper were preformed using 4.41 Å neutrons at 
the SuperADAM reflectometer at ILL [13]. The samples were measured using a non-polarizing 
periodic Bragg mirror that gives a divergence of the neutrons of 0.27 mrad. The detector was a 2D 
Position Sensitive Detector (PSD). The Be and diamond coatings were measured with a 0.15 mm 
horizontal slit in front of the sample. The Ni coating was measured with a 0.05 mm horizontal slit 
because of the smaller sample size. The size of the vertical slit in front of the sample remained 
constant at 50 mm in all experiments. All data are corrected for variations in the incoming neutron flux 
by scaling the data to a beam monitor. 

3.  Results and discussion 
 
Figure 1 compares the reflectivity measurements of the Ni coating and the Be coating. It is apparent 
that the critical angles for the Ni and the Be coatings are practically the same, as would be expected 
since they have a neutron scattering length density that is almost equal, as shown in Table 1. It can 
also be seen that the measured reflectivity is in good agreement with the calculated reflectivity for Ni. 
In Figure 2 we show the measured reflectivity curve for the Be and diamond coating together with the 
calculated reflectivity curve for Ni and 58Ni. In the angular range 0-0.2 degrees the length of the 
sample and the horizontal slit size define the shape of the reflectivity curve, which is consistent with 
total external reflection. The diamond data have been scaled to the Be data so the shape in this region 
is the same since they the samples have the same length and are measured with the same slit settings. 

 
Table 1. The neutron scattering length density is calculated using data from [14] and the 
absorption cross section is from [14]. The data is for thermal neutrons (2200 m/s). 
 

 Neutron scattering 
length density  
(1*1014 m-2) 

Absorption 
cross section  

(barn) 
Be 9.63 0.0088 
C(amorphous) 6.00 0.0035 
C(diamond) 11.70 0.0035 
Ni 9.41 4.49 
58Ni 13.14 4.50 

 

International Workshop on Neutron Optics and Detectors (NOP&D 2013) IOP Publishing
Journal of Physics: Conference Series 528 (2014) 012005 doi:10.1088/1742-6596/528/1/012005

3



 
 
 
 
 
 

 
Figure 1. Reflectivity curves of the Ni and the Be samples measured with 4.41 Å neutrons. The 
thick line is the calculated reflectivity for Ni, the other lines are guides for the eye. The shapes of 
the experimental curves below 0.3 degrees are caused by the finite sample length and the size of the 
horizontal slit. Error bars are generally smaller than the marker size. 

 
Fig. 2. Reflectivity curves for the Be and the diamond samples measured with 4.41 Å neutrons. The 
two thick lines are the calculated reflectivity for Ni (solid) and 58Ni (dashed), the thin lines are 
guides for the eye. The intensity curve for the diamond data is scaled with a constant so the shape 
of the curve follows that of Be below 0.2 deg. Error bars are generally smaller than the marker size. 
 

From 0.2 degree and to the critical angle of the diamond coating the reflectivity curve is flat as 
expected for total external reflection, but at a reduced reflectivity of 0.95. This reduction is most likely 
to be caused by the crystalline diamond coating, which has a high roughness of 6 nm. Furthermore, the 
sample contains about 2% hydrogen, which are mainly concentrated in the grain boundaries. 
Hydrogen has a very high incoherent scattering cross section that also contributes to the loss of 
reflectivity at the sample surface. 

We see also that the diamond coating has a higher critical angle than Ni and Be, corresponding to 
m=1.07, which is nonetheless below the theoretical value, m=1.12, for diamond. There are several 
reasons for this. The diamond film bindings are likely to not be 100% sp3 bindings, so the mass 
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density of the coating is lower than for diamond. The hydrogen contamination and roughness would 
also be expected to contribute to this lower performance. 

We have calculated the gamma radiation emitted from a 250 nm thick coating of the different 
materials using MCNPX [12]. For each coating 109 neutrons were calculated. Since the tabulated 
values for absorption cross sections are for thermal neutrons (λ = 1.80 Å) we used thermal neutrons 
with an incidence angle of 0.3 degree for these calculations. For thermal neutrons, m=1 corresponds to 
0.18 degrees. Therefore, at 0.3 degrees there will be very little reflection and all the neutrons will be 
transmitted into the coating. In Figure 3, we show the calculated probability for emitted gamma rays 
per neutron from the various coatings. The emitted gamma rays from Be and C have fewer than 20 
different discrete energies. For Ni, the numbers of discrete energies exceeds 500. In order to make the 
plot easier to read, the data are shown in 0.1 MeV bins. MCNPX does not include the 2 carbon gamma 
ray lines at energies of 6.1 MeV and 8.2 MeV, however both have a very small probability to occur. 

 
Figure 3. Probability of gamma photon emission from a 250 nm thick films from one grazing 
incidence neutron as a function of photon energy. The data were calculated using MCNPX as 
described in the text. 

 
Table 2. The integrated probability for gamma photon emission from one absorbed 
neutron. The data were calculated using MCNPX as described in the text. 
 

 Gamma ray emitted 
from one absorbed 

neutron 
(Probability) 

Total gamma ray 
emitted from 

film 
(Probability) 

Be 1.8 1.8*10-7 
Diamond 1.5 2.0*10-7 
Ni 1.5 6.6*10-5 
10B 0.94      - 

 

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

0 2 4 6 8 10 12

Ni
Be
diamond

P
ro

ba
bi

lit
y

Energy in 0.1 MeV bins (MeV)

International Workshop on Neutron Optics and Detectors (NOP&D 2013) IOP Publishing
Journal of Physics: Conference Series 528 (2014) 012005 doi:10.1088/1742-6596/528/1/012005

5



 
 
 
 
 
 

From Table 2, we see that when a neutron is absorbed the probability for gamma ray emission is the 
same for Ni and diamond, and for Be the total probability is a little higher. But because the absorption 
cross section for Ni is order of magnitude larger then for Be and diamond (Table 1), the total number 
of gamma ray photons from the Ni coating is much larger than for the Be and diamond coating, as 
shown in Table 2. From Figure 3, we see that the gamma radiation from Ni also has higher energies 
than that of Be and diamond. 
The non-reflected neutrons, which are not absorbed in the coating, will still need to be absorbed, 
which is why borated substrates are generally used. When a neutron is absorbed in 10B the number of 
emitted gamma photons is lower than when the neutron is absorbed in Ni, as shown in Table 2. Also 
the majority of the emitted gamma rays from 10B are at the energy of 0.477 MeV. As a result, by 
replacing the Ni coating with Be or diamond, one will both reduce the total amount of gamma 
radiation and shift the radiation to lower energies. Both these two effects will help reduce the amount 
of shielding required around the guide. 

4.  Conclusion and future work 
Today many new neutron guides have sophisticated shapes compared to traditional straight neutron 
guides. Especially for long guides there are still parts of the guide where only m=1 coatings are 
required or where the benefit of using higher m-value coatings do not outweigh the increase in price 
for the supermirrors. Gamma radiation that is emitted when a neutron is absorbed in the guide has to 
be attenuated for the safety of the people working in the area and because the gamma radiation can be 
problematic for some experiments at the end of the neutron guide. Both by reducing the amount of 
gamma radiation and/or by reducing the energy of the emitted gamma radiation, one will reduce the 
amount of shielding needed. 
With this work we have demonstrated that Be could be a promising coating for neutron guides to 
replace the traditional Ni coatings. This would be expected to reduce the total emitted gamma ray from 
the guide, and shift the gamma ray spectrum towards lower energies. Coating the guide optic with Be 
will be more expensive than coating with Ni, because of the extra precautions that have to be taken 
during the coating process, but are expected to result in lower overall prices due to the fact that less 
shielding is needed around the neutron guide. A cost-benefit analysis of this will be made in the near 
future. 
On the other hand, with the high roughness of our diamond sample coating it would not compete as a 
coating for neutron guides. Instead, we conclude that diamond coatings with a high level of sp3 
bindings will have a m-value that is higher than 1. More work is needed on the diamond-like carbon 
(DLC) coatings and nano-crystalline diamond coatings, but these could provide performance 
advantages over both Ni and Be and without the toxicity drawbacks that Be carries. 

Acknowledgement 
This work was supported under the Cluster of Research Infrastructures for Synergies in Physics 
(CRISP) program, which is co-funded, by the partners and the European Commission under the 7th 
Framework Programme Grant Agreement 283745. 

References 
[1] Maier-Leibnitz H and Springer T 1963 Reactor Science and Technology 17 217 
[2] Fermi E and Zinn W H 1946 Phys.Rev. 70 103 
[3] Fermi E and Marshall L 1947 Phys. Rev. 71 666 
[4] Mezei 1976 Communications on Physics 1 81 
[5] Dianoux A J and Lander G 2003 Neutron Data Booklet, Secound Edition (Institit Laue-

Langevin) p 4.2-1 and 4.2-2 
[6] Xu H, Alford C, Chason E, Detor A J, Fuller T, Hamza A V, Hayes J, Moreno K A, Nikroo A, 

Buuren T, Wang Y, Wu J, Wilkens H and Youngblood K P 2012 J. Mater. Res. 27 822 
[7] Grundy M J, Richardson R M, Roser S J, Beamson G, Brennan W J, Howard J, O'Neil M, 

International Workshop on Neutron Optics and Detectors (NOP&D 2013) IOP Publishing
Journal of Physics: Conference Series 528 (2014) 012005 doi:10.1088/1742-6596/528/1/012005

6



 
 
 
 
 
 

Penfold J, Shackleton C and Ward R C 1989 Thin Solid Films 172 269 
[8] Heule S, Atchison F, Daum M, Foelske A, Henneck R, Kasprzak M, Kirch K, Knecht A, 

Kuzniak M, Lippert T, Meier M, Pichlmaier A and Straumann U 2007 Applied Surface 
Science 253 8245 

[9] Mueller C, Haenni W, Binggeli M and Hintermann H E 1993 Diamond and Related Materials 2 
1211 

[10] Windt D L 1998 Computers in Physics 12 360 
[11] Alianelli L, Sánchez del Río M and Felici R 2004 Physica B 350 e737 
[12] Waters L S, McKinney G W, Durkee J W, Fensin M L, Hendricks J S, James M R, Johns R C 

and Pelowitz D B 2007 AIP conference Proceedings 896 81 
[13] Devishvili A, Zhernenkov K, Dennison A J C, Toperverg B P, Wolff M, Hjörvarsson B and 

Zabel H 2013 Review of Scientific Instruments 84 025112 
[14] www.ncnr.nist.gov/resources/n-lengths/ 

International Workshop on Neutron Optics and Detectors (NOP&D 2013) IOP Publishing
Journal of Physics: Conference Series 528 (2014) 012005 doi:10.1088/1742-6596/528/1/012005

7


