2,116 research outputs found
Vector mesons in a relativistic point-form approach
We apply the point form of relativistic quantum mechanics to develop a
Poincare invariant coupled-channel formalism for two-particle systems
interacting via one-particle exchange. This approach takes the exchange
particle explicitly into account and leads to a generalized eigenvalue equation
for the Bakamjian-Thomas type mass operator of the system. The coupling of the
exchange particle is derived from quantum field theory. As an illustrative
example we consider vector mesons within the chiral constituent quark model in
which the hyperfine interaction between the confined quark-antiquark pair is
generated by Goldstone-boson exchange. We study the effect of retardation in
the Goldstone-boson exchange by comparing with the commonly used instantaneous
approximation. As a nice physical feature we find that the problem of a too
large - splitting can nearly be avoided by taking the dynamics of
the exchange meson explicitly into account.Comment: 14 pages, 1 figur
Climatology and Interannual Variability of Wind Speeds In and Around Minnesota
Wind is receiving renewed attention as an energy resource. Unfortunately, many wind energy assessments are based on records that may not be representative of the long-term wind resource. To better evaluate wind energy potential in and around Minnesota, we analyze wind speeds from 1961 to 1990 for seven stations in the region at a height of about 6.1 m above ground level. We used hourly and three-hourly speed observations to develop a 30-year time series of mean monthly wind speeds, their maxima and minima, and the diurnal wind speed range. Simple linear regression was used to evaluate long-term trends in each variable. Wind speeds across the state show meaningful intrannual and interannual variability for each of the seven stations and for the seven-station (regional) average. The diurnal wind speed range (DWR) also exhibits marked variability, with distinct periods of increased and decreased DWR separated by abrupt transitions. The observed variability of wind speed over the 30-year period underscores the necessity of recognizing this variability when making investment decisions for wind energy generation
New insight into the dynamic properties and the active site architecture of H-Ras p21 revealed by X-ray crystallography at very high resolution
<p>Abstract</p> <p>Background</p> <p>In kinetic crystallography, the usually static method of X-ray diffraction is expanded to allow time-resolved analysis of conformational rearrangements in protein structures. To achieve this, reactions have to be triggered within the protein crystals of interest, and optical spectroscopy can be used to monitor the reaction state. For this approach, a modified form of H-Ras p21 was designed which allows reaction initiation and fluorescence readout of the initiated GTPase reaction within the crystalline state. Rearrangements within the crystallized protein due to the progressing reaction and associated heterogeneity in the protein conformations have to be considered in the subsequent refinement processes.</p> <p>Results</p> <p>X-ray diffraction experiments on H-Ras p21 in different states along the reaction pathway provide detailed information about the kinetics and mechanism of the GTPase reaction. In addition, a very high data quality of up to 1.0 Ă
resolution allowed distinguishing two discrete subconformations of H-Ras p21, expanding the knowledge about the intrinsic flexibility of Ras-like proteins, which is important for their function. In a complex of H-RasâąGppNHp (guanosine-5'-(ÎČ,Îł-imido)-triphosphate), a second Mg<sup>2+ </sup>ion was found to be coordinated to the Îł-phosphate group of GppNHp, which positions the hydrolytically active water molecule very close to the attacked Îł-phosphorous atom.</p> <p>Conclusion</p> <p>For the structural analysis of very high-resolution data we have used a new 'two-chain-isotropic-refinement' strategy. This refinement provides an alternative and easy to interpret strategy to reflect the conformational variability within crystal structures of biological macromolecules. The presented fluorescent form of H-Ras p21 will be advantageous for fluorescence studies on H-Ras p21 in which the use of fluorescent nucleotides is not feasible.</p
The âlawsâ of binocular rivalry: 50 years of Leveltâs propositions
It has been fifty years since Leveltâs monograph On Binocular Rivalry (1965) was published, but its four propositions that describe the relation between stimulus strength and the phenomenology of binocular rivalry remain a benchmark for theorists and experimentalists even today. In this review, we will revisit the original conception of the four propositions and the scientific landscape in which this happened. We will also provide a brief update concerning distributions of dominance durations, another aspect of Leveltâs monograph that has maintained a prominent presence in the field. In a critical evaluation of Leveltâs propositions against current knowledge of binocular rivalry we will then demonstrate that the original propositions are not completely compatible with what is known today, but that they can, in a straightforward way, be modified to encapsulate the progress that has been made over the past fifty years. The resulting modified, propositions are shown to apply to a broad range of bistable perceptual phenomena, not just binocular rivalry, and they allow important inferences about the underlying neural systems. We argue that these inferences reflect canonical neural properties that play a role in visual perception in general, and we discuss ways in which future research can build on the work reviewed here to attain a better understanding of these propertie
Occlusion-related lateral connections stabilize kinetic depth stimuli through perceptual coupling
Local sensory information is often ambiguous forcing the brain to integrate spatiotemporally separated information for stable conscious perception. Lateral connections between clusters of similarly tuned neurons in the visual cortex are a potential neural substrate for the coupling of spatially separated visual information. Ecological optics suggests that perceptual coupling of visual information is particularly beneficial in occlusion situations. Here we present a novel neural network model and a series of human psychophysical experiments that can together explain the perceptual coupling of kinetic depth stimuli with activity-driven lateral information sharing in the far depth plane. Our most striking finding is the perceptual coupling of an ambiguous kinetic depth cylinder with a coaxially presented and disparity defined cylinder backside, while a similar frontside fails to evoke coupling. Altogether, our findings are consistent with the idea that clusters of similarly tuned far depth neurons share spatially separated motion information in order to resolve local perceptual ambiguities. The classification of far depth in the facilitation mechanism results from a combination of absolute and relative depth that suggests a functional role of these lateral connections in the perception of partially occluded objects
Spurious signals in DQF spectroscopy: two-shot stimulated echoes
The most widely used technique for double-quantum filtered (DQF) single-voxel spectroscopy (SVS) is based on a symmetric PRESS sequence with two additional spatially unselective Ï/2 pulses, one of which is usually frequency selective. The actual filtering, rejecting signals from all uncoupled resonances, can be done by suitable phase cycling of the rf pulses in successive shots, but in practice gradient filtering is always used. Under usual conditions the sequence repetition time is comparable to the spin-lattice relaxation time, and a stimulated echo is formed by five out of the ten rf pulses in two consecutive shots. This echo is not filtered out by the gradients, and additional phase cycling is needed to eliminate it. Its spatial origin is the full transverse slice selected by the last pulse of the PRESS sequence. The SVS shimming procedure may create an important field variation in this slice (outside the volume of interest VOI). Water singlet signals therefore appear in a band of frequencies other than 4.7 ppm, and remain unaffected by water suppression pulses. In practice phase-alternation schemes can reduce these spurious signals by several orders of magnitude, but even then they may mask the weak metabolite signals of interest. We describe a strategy to minimize these spurious signals and propose a 16-step phase cycling scheme that attenuates the stimulated echo in every two-step subcycl
Production and Downstream Integration of 5-(Chloromethyl)furfural from Lignocellulose
The importance of reducing the strong dependence of the chemical industry on fossil feedstock is no longer a debate. Above-the-ground carbon is abundant, but scalable technologies to supply alternatives to fossil-fuel-derived chemicals and/or materials at the world scale are still not available. Lignocellulosic biomass is the most available carbon source, and a first requirement for its valorization is the complete saccharification of its sugar-bearing components. HCl-based technologies can achieve this at 20 °C and ambient pressure. These principles were disclosed in the 1920s, but the inability to economically separate sugars from acids impeded its commercialization. Avantium Chemicals B.V. developed a modern version of this âBergiusâ highly concentrated acid hydrolysis, in which the saccharides in HCl are transformed into furanics without any prior purification, in particular, to 5-(chloromethyl)furfural (CMF). Saccharide conversion to CMF was developed by Mascal in the early 2000s. CMF is extracted in situ using immiscible organic solvents, allowing for an easy product separation. This study not only targets to investigate the viability and optimization of this integrated process but also aims to predict the outcome of the CMF formation reaction by applying design of experiment techniques from the hydrolyzed saccharides varying a broad range of reaction parameters
- âŠ