1,182 research outputs found

    Point form relativistic quantum mechanics and relativistic SU(6)

    Get PDF
    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces

    Bakamjian-Thomas mass operator for the few-nucleon system from chiral dynamics

    Get PDF
    We present an exploratory study consisting in the formulation of a relativistic quantum mechanics to describe the few-nucleon system at low energy, starting from the quantum field theoretical chiral Lagrangian involving pions and nucleons. To this aim we construct a Bakamjian-Thomas mass operator and perform a truncation of the Fock space which respects at each stage the relativistic covariance. Such truncation is justified, at sufficiently low energy, in the framework of a systematic chiral expansion. As an illustration we discuss the bound state observables and low-energy phaseshifts of the nucleon-nucleon and pion-nucleon scattering at the leading order of our scheme.Comment: 17 pages, 10 figures. Revised formulation, matches the journal versio

    A relativistic coupled-channel formalism for the pion form factor

    Get PDF
    The electromagnetic form factor of a confined quark-antiquark pair is calculated within the framework of point-form relativistic quantum mechanics. The dynamics of theexchanged photon is explicitly taken into account by treating theelectromagnetic scattering of an electron by a meson as a relativistic two-channel problem for a Bakamjian-Thomas type mass operator. This approach guarantees Poincare invariance. Using a Feshbach reduction the coupled-channel problem can be converted into a one-channel problem for the elastic electron-meson channel. By comparing the one-photon-exchange optical potential at the constituent and hadronic levels, we are able to unambiguously identify the electromagnetic meson form factor. Violations of cluster-separability properties, which are inherent in the Bakamjian-Thomas approach, become negligible for sufficiently large invariant mass of the electron-meson system. In the limit of an infinitely large invariant mass, an equivalence with form-factor calculations done in front-form relativistic quantum mechanics is established analytically.Comment: 3 pages, 1 figure, submitted to EPJ Web of Conference

    Point-form quantum field theory and meson form factors

    Full text link
    We shortly review point-form quantum field theory, i.e. the canonical quantization of a relativistic field theory on a Lorentz-invariant surface of the form xμxμ=τ2x_\mu x^\mu = \tau^2. As an example of how point-form quantum field theory may enter the framework of relativistic quantum mechanics we discuss the calculation of the electromagnetic form factor of a confined quark-antiquark pair (e.g. the pion).Comment: 3 pages, 2 figures. Based on a talk presented by W. Schweiger at the 20th European Conference on Few-Body Problems in Physics, September 10-14 2007, Pisa, Ital

    Electroweak properties of baryons in a covariant chiral quark model

    Full text link
    The proton and neutron electromagnetic form factors and the nucleon axial form factor have been calculated in the Goldstone-boson exchange constituent-quark model within the point-form approach to relativistic quantum mechanics. The results, obtained without any adjustable parameter nor quark form factors, are, due to the dramatic effects of the boost required by the covariant treatment, in striking agreement with the data.Comment: Proceedings of the Conference N*2001, Mainz; 4 pages, 3 figures included in eps format; World Scientific style file include
    corecore