52 research outputs found

    Targeted treatment in a case series of AR+, HRAS/PIK3CA co-mutated salivary duct carcinoma

    Get PDF
    BACKGROUND AND PURPOSE: A subgroup of salivary duct carcinoma (SDC) harbor overexpression of the androgen receptor (AR), and co-occurring mutations in the HRAS- and PIK3CA-genes. The impact of genomic complexity on targeted treatment strategies in advanced cancer is unknown. MATERIALS AND METHODS: We analyzed molecular and clinical data from an institutional molecular tumor board (MTB) to identify AR+, HRAS/PIK3CA co-mutated SDC. Follow-up was performed within the MTB registrational study or retrospective chart review after approval by the local ethics committee. Response was assessed by the investigator. A systematic literature search was performed in MEDLINE to identify additional clinically annotated cases. RESULTS: 4 patients with AR+ HRAS/PIK3CA co-mutated SDC and clinical follow-up data were identified from the MTB. An additional 9 patients with clinical follow-up were identified from the literature. In addition to AR overexpression and HRAS and PIK3CA-alterations, PD-L1 expression and Tumor Mutational Burden > 10 Mutations per Megabase were identified as additional potentially targetable alterations. Among evaluable patients, androgen deprivation therapy (ADT) was initiated in 7 patients (1 Partial Response (PR), 2 Stable Disease (SD), 3 Progressive Disease (PD), 2 not evaluable), tipifarnib was initiated in 6 patients (1 PR, 4 SD, 1 PD). One patient each was treated with immune checkpoint inhibition (Mixed Response) and combination therapies of tipifarnib and ADT (SD) and alpelisib and ADT (PR). CONCLUSION: Available data further support comprehensive molecular profiling of SDC. Combination therapies, PI3K-inhibitors and immune therapy warrant further investigation, ideally in clinical trials. Future research should consider this rare subgroup of SDC

    Down-regulation of the myo-inositol oxygenase gene family has no effect on cell wall composition in Arabidopsis

    Get PDF
    The enzyme myo-inositol oxygenase (MIOX; E.C. 1.13.99.1) catalyzes the ring-opening four-electron oxidation of myo-inositol into glucuronic acid, which is subsequently activated to UDP-glucuronic acid (UDP-GlcA) and serves as a precursor for plant cell wall polysaccharides. Starting from single T-DNA insertion lines in different MIOX-genes a quadruple knockdown (miox1/2/4/5-mutant) was obtained by crossing, which exhibits greater than 90% down-regulation of all four functional MIOX genes. Miox1/2/4/5-mutant shows no visible phenotype and produces viable pollen. The alternative pathway to UDP-glucuronic acid via UDP-glucose is upregulated in the miox1/2/4/5-mutant as a compensatory mechanism. Miox1/2/4/5-mutant is impaired in the utilization of myo-inositol for seedling growth. The incorporation of myo-inositol derived sugars into cell walls is strongly (>90%) inhibited. Instead, myo-inositol and metabolites produced from myo-inositol such as galactinol accumulate in the miox1/2/4/5-mutant. The increase in galactinol and raffinose family oligosaccharides does not enhance stress tolerance. The ascorbic acid levels are the same in mutant and wild type plants

    Cloning and endogenous expression of a Eucalyptus grandis UDP-glucose dehydrogenase cDNA

    Get PDF
    UDP-glucose dehydrogenase (UGDH) catalyzes the oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronate (UDP-GlcA), a key sugar nucleotide involved in the biosynthesis of plant cell wall polysaccharides. A full-length cDNA fragment coding for UGDH was cloned from the cambial region of 6-month-old E. grandis saplings by RT-PCR. The 1443-bp-ORF encodes a protein of 480 amino acids with a predicted molecular weight of 53 kDa. The recombinant protein expressed in Escherichia coli catalyzed the conversion of UDP-Glc to UDP-GlcA, confirming that the cloned cDNA encodes UGDH. The deduced amino acid sequence of the cDNA showed a high degree of identity with UGDH from several plant species. The Southern blot assay indicated that more than one copy of UGDH is present in Eucalyptus. These results were also confirmed by the proteomic analysis of the cambial region of 3- and 22-year-old E. grandis trees by 2-DE and LC-MS/MS, showing that at least two isoforms are present. The cloned gene is mainly expressed in roots, stem and bark of 6-month-old saplings, with a lower expression in leaves. High expression levels were also observed in the cambial region of 3- and 22-year-old trees. The results described in this paper provide a further view of the hemicellulose biosynthesis during wood formation in E. grandis

    Adipose Tissue Immune Response: Novel Triggers and Consequences for Chronic Inflammatory Conditions

    Get PDF
    corecore