128 research outputs found

    Development, validation and use of an insulin sensitivity score in youths with diabetes: the SEARCH for Diabetes in Youth study

    Get PDF
    The ability to measure insulin sensitivity across the phenotypic spectrum of diabetes may contribute to a more accurate characterisation of diabetes type. Our goal was to develop and validate an insulin sensitivity (IS) score using the euglycaemic–hyperinsulinaemic clamp in a subset (n=85) of 12– to 19-year-old youths with diabetes participating in the SEARCH study in Colorado, USA

    Distinct Molecular Evolutionary Mechanisms Underlie the Functional Diversification of the Wnt and TGFβ Signaling Pathways

    Get PDF
    The canonical Wnt pathway is one of the oldest and most functionally diverse of animal intercellular signaling pathways. Though much is known about loss-of-function phenotypes for Wnt pathway components in several model organisms, the question of how this pathway achieved its current repertoire of functions has not been addressed. Our phylogenetic analyses of 11 multigene families from five species belonging to distinct phyla, as well as additional analyses employing the 12 Drosophila genomes, suggest frequent gene duplications affecting ligands and receptors as well as co-evolution of new ligand–receptor pairs likely facilitated the expansion of this pathway’s capabilities. Further, several examples of recent gene loss are visible in Drosophila when compared to family members in other phyla. By comparison the TGFβ signaling pathway is characterized by ancient gene duplications of ligands, receptors, and signal transducers with recent duplication events restricted to the vertebrate lineage. Overall, the data suggest that two distinct molecular evolutionary mechanisms can create a functionally diverse developmental signaling pathway. These are the recent dynamic generation of new genes and ligand–receptor interactions as seen in the Wnt pathway and the conservative adaptation of ancient pre-existing genes to new roles as seen in the TGFβ pathway. From a practical perspective, the former mechanism limits the investigator’s ability to transfer knowledge of specific pathway functions across species while the latter facilitates knowledge transfer

    Bioreactors as engineering support to treat cardiac muscle and vascular disease

    Get PDF
    Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements

    Murine Dishevelled 3 Functions in Redundant Pathways with Dishevelled 1 and 2 in Normal Cardiac Outflow Tract, Cochlea, and Neural Tube Development

    Get PDF
    Dishevelled (Dvl) proteins are important signaling components of both the canonical β-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3−/− mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3−/− and LtapLp/+ mutants, Dvl3+/−;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant

    The serious games ecosystem: Interdisciplinary and intercontextual praxis

    Get PDF
    This chapter will situate academia in relation to serious games commercial production and contextual adoption, and vice-versa. As a researcher it is critical to recognize that academic research of serious games does not occur in a vaccum. Direct partnerships between universities and commercial organizations are increasingly common, as well as between research institutes and the contexts that their serious games are deployed in. Commercial production of serious games and their increased adoption in non-commercial contexts will influence academic research through emerging impact pathways and funding opportunities. Adding further complexity is the emergence of commercial organizations that undertake their own research, and research institutes that have inhouse commercial arms. To conclude, we explore how these issues affect the individual researcher, and offer considerations for future academic and industry serious games projects

    Murine Dishevelled 3 Functions in Redundant Pathways with Dishevelled 1 and 2 in Normal Cardiac Outflow Tract, Cochlea, and Neural Tube Development

    Get PDF
    Dishevelled (Dvl) proteins are important signaling components of both the canonical β-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3−/− mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3−/− and LtapLp/+ mutants, Dvl3+/−;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant

    Characterization techniques for studying the properties of nanocarriers for systemic delivery

    Get PDF
    Nanocarriers have attracted a huge interest in the last decade as efficient drug delivery systems and diagnostic tools. They enable effective, targeted, controlled delivery of therapeutic molecules while lowering the side effects caused during the treatment. The physicochemical properties of nanoparticles determine their in vivo pharmacokinetics, biodistribution and tolerability. The most analyzed among these physicochemical properties are shape, size, surface charge and porosity and several techniques have been used to characterize these specific properties. These different techniques assess the particles under varying conditions, such as physical state, solvents etc. and as such probe, in addition to the particles themselves, artifacts due to sample preparation or environment during measurement. Here, we discuss the different methods to precisely evaluate these properties, including their advantages or disadvantages. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed

    Timescapes of Himalayan hydropower: promises, project life cycles, and precarities

    Get PDF
    In this paper, we review the existing social science scholarship focused on hydropower development in the Himalayan region, using an interpretive lens attuned to issues of time and temporality. While the spatial politics of Himalayan hydropower are well examined in the literature, an explicit examination of temporal politics is lacking. In this paper, we present a conceptual framework organized around the heuristic of timescapes, highlighting temporal themes implicit in the existing literature. In three sections, we explore the temporal politics of anticipation that shape hydropower dreams, the intersecting temporalities and rhythms that modulate the life cycles of hydropower projects, and the ways that geological and hydrological time affect both hydropower development and broader Himalayan futures. Along the way, we pose a series of questions useful for framing future research given the significant climatic, geophysical, and sociopolitical changes underway in the Himalayan bioregion, calling for greater analytical attention to time, temporality, and temporal ethics in future studies of hydropower in the Himalayas and beyond.Austin Lord, Georgina Drew, Mabel Denzin Gerga
    corecore