113 research outputs found

    The pursuit of isotopic and molecular fire tracers in the polar atmosphere and cryosphere

    Get PDF
    We present an overview of recent multidisciplinary, multi-institutional efforts to identify and date major sources of combustion aerosol in the current and paleoatmospheres. The work was stimulated, in part, by an atmospheric particle \u27sample of opportunity\u27 collected at Summit, Greenland in August 1994, that bore the 14C imprint of biomass burning. During the summer field seasons of 1995 and 1996, we collected air filter, surface snow and snowpit samples to investigate chemical and isotopic evidence of combustion particles that had been transported from distant fires. Among the chemical tracers employed for source identification are organic acids, potassium and ammonium ions, and elemental and organic components of carbonaceous particles. Ion chromatography, performed by members of the Climate Change Research Center (University of New Hampshire), has been especially valuable in indicating periods at Summit that were likely to have been affected by the long range transport of biomass burning aerosol. Univariate and multivariate patterns of the ion concentrations in the snow and ice pinpointed surface and snowpit samples for the direct analysis of particulate (soot) carbon and carbon isotopes. The research at NIST is focusing on graphitic and polycyclic aromatic carbon, which serve as almost certain indicators of fire, and measurements of carbon isotopes, especially 14C, to distinguish fossil and biomass combustion sources. Complementing the chemical and isotopic record, are direct \u27visual\u27 (satellite imagery) records and less direct backtrajectory records, to indicate geographic source regions and transport paths. In this paper we illustrate the unique way in which the synthesis of the chemical, isotopic, satellite and trajectory data enhances our ability to develop the recent history of the formation and transport of soot deposited in the polar snow and ice

    The symmetry problem: current theories and prospects

    Get PDF
    The structural approach to alternatives (Katzir in Linguist Philos 30(6):669–690, 2007; Fox and Katzir in Nat Lang Semant 19(1):87–107, 2011; Katzir in Semantics, pragmatics and the case of scalar implicatures, Palgrave Macmillan, London, pp 40–71, 2014) is the most developed attempt in the literature at solving the symmetry problem of scalar implicatures. Problematic data with indirect and particularised scalar implicatures have however been raised (Romoli in Snippets 27:14–15, 2013; Trinh and Haida in Nat Lang Semant 25(4):249–270, 2015). To address these problems, Trinh and Haida (2015) proposed to augment the theory with the Atomicity Constraint. Here we show that this constraint falls short of explaining minimal variants of the original problems, and moreover that it runs into trouble with the inferences of sentences involving gradable adjectives like full and empty. We furthermore discuss how the structural approach suffers at times from the problem of ‘too many lexical alternatives’ pointed out by Swanson (Linguist Philos 33(1):31–36, 2010), and at other times from the opposite problem of ‘too few lexical alternatives’. These three problems epitomise the challenge of constructing just enough alternatives under the structural approach to solve the symmetry problem in full generality. Finally, we also sketch another recent attempt at solving the symmetry problem, Bergen et al. (Semant Pragmat 9(20), 2016), which is based on relative informativity and complexity. We argue that Bergen et al. do not provide a general solution to the symmetry problem either, by pointing to some of the open problematic cases that remain for this approach as well. We conclude that while important progress has been made in the theory of alternatives for scalar implicatures in the last few years, a full solution to the symmetry problem has not yet been attained

    Veterinary Considerations for the Theoretical Resurrection of Extinct Species

    Get PDF
    The de-extinction of the dinosaur is a dubious possibility but its consideration brings forth some issues that are at least worthy of scientific discussion. In this review, we discuss two distinct issues that have implications for a de-extinct species such as a dinosaur: the ability, or lack thereof, to safely sedate a rare and potentially fractious animal capable of harming the veterinary staff tasked with its care; and, disease risks associated with a species that has been extinct for millions of years. To identify potential sedatives, comparative pharmacology will be needed to uncover the links between receptor pharmacology and the desired clinical outcomes of activating established alpha-2 adrenergic, opioid, and benzodiazepine receptors. Specific to disease control, it will be necessary to understand the unique susceptibility of the new species to current diseases as well as predicting their reservoir capacity for potential human and veterinary pandemic diseases. While the topics presented herein are not exhaustive, this review highlights some of the foremost research that should be conducted in order to serve the unique veterinary needs of a de-extinct species using the dinosaur as a paradigm. Addressing these issues should be considered if an intact dinosaur genome becomes available, regardless of the feasibility of dinosaur resurrection

    A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a

    Get PDF
    Because of increased interest in the marine and atmospheric sciences in elemental carbon (EC), or black carbon (BC) or soot carbon (SC), and because of the difficulties in analyzing or even defining this pervasive component of particulate carbon, it has become quite important to have appropriate reference materials for intercomparison and quality control. The NIST "urban dust" Standard Reference Material? SRM 1649a is useful in this respect, in part because it comprises a considerable array of inorganic and organic species, and because it exhibits a large degree of (14C) isotopic heterogeneity, with biomass carbon source contributions ranging from about 2 % (essentially fossil aliphatic fraction) to about 32 % (polar fraction). A primary purpose of this report is to provide documentation for the new isotopic and chemical particulate carbon data for the most recent (31 Jan. 2001) SRM 1649a Certificate of Analysis. Supporting this is a critical review of underlying international intercomparison data and methodologies, provided by 18 teams of analytical experts from 11 institutions. Key results of the intercomparison are: (1) a new, Certified Value for total carbon (TC) in SRM 1649a; (2) 14C Reference Values for total carbon and a number of organic species, including for the first time 8 individual PAHs; and (3) elemental carbon (EC) Information Values derived from 13 analytical methods applied to this component. Results for elemental carbon, which comprised a special focus of the intercomparison, were quite diverse, reflecting the confounding of methodological-matrix artifacts, and methods that tended to probe more or less refractory regions of this universal, but ill-defined product of incomplete combustion. Availability of both chemical and 14C speciation data for SRM 1649a holds great promise for improved analytical insight through comparative analysis (e.g., fossil/ biomass partition in EC compared to PAH), and through application of the principle of isotopic mass balance.Carrie, L. A., Benner, B. A., Kessler, J. D., Klinedinst, D. B., Klouda, G. A., Marolf, J. V., . . . Schmid, H. (2002). A Critical Evaluation of Interlaboratory Data on Total, Elemental, and Isotopic Carbon in the Carbonaceous Particle Reference Material, NIST SRM 1649a. Journal of Research of the National Institute of Standards and Technology, 107(3), 279-298

    Spire, an Actin Nucleation Factor, Regulates Cell Division during Drosophila Heart Development

    Get PDF
    The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir), an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell division in Myocyte enhancer factor 2-, Tinman (Tin)-, Even-skipped- and Seven up (Svp)-positive heart cells. In addition, genetic interaction analysis shows that spir functionally interacts with Dorsocross, tin, and pannier to properly specify the cardiac fate. Furthermore, through visualization of double heterozygous embryos, we determines that spir cooperates with CycA for heart cell specification and division. Finally, when comparing the spir mutant phenotype with that of a CycA mutant, the results suggest that most Svp-positive progenitors in spir mutant embryos cannot undergo full cell division at cell cycle 15, and that Tin-positive progenitors are arrested at cell cycle 16 as double-nucleated cells. We conclude that Spir plays a crucial role in controlling dorsal vessel formation and has a function in cell division during heart tube morphogenesis

    In silico analysis of phytohormone metabolism and communication pathways in citrus transcriptome

    Full text link
    • …
    corecore