236 research outputs found

    Identifying capacitive and inductive loss in lumped element superconducting hybrid titanium nitride/aluminum resonators

    Full text link
    We present a method to systematically locate and extract capacitive and inductive losses in superconducting resonators at microwave frequencies by use of mixed-material, lumped element devices. In these devices, ultra-low loss titanium nitride was progressively replaced with aluminum in the inter-digitated capacitor and meandered inductor elements. By measuring the power dependent loss at 50 mK as the Al-TiN fraction in each element is increased, we find that at low electric field, i.e. in the single photon limit, the loss is two level system in nature and is correlated with the amount of Al capacitance rather than the Al inductance. In the high electric field limit, the remaining loss is linearly related to the product of the Al area times its inductance and is likely due to quasiparticles generated by stray radiation. At elevated temperature, additional loss is correlated with the amount of Al in the inductance, with a power independent TiN-Al interface loss term that exponentially decreases as the temperature is reduced. The TiN-Al interface loss is vanishingly small at the 50 mK base temperature.Comment: 10 pages, 5 figure

    Characterization and In-situ Monitoring of Sub-stoichiometric Adjustable Tc Titanium Nitride Growth

    Get PDF
    The structural and electrical properties of Ti-N films deposited by reactive sputtering depend on their growth parameters, in particular the Ar:N2 gas ratio. We show that the nitrogen percentage changes the crystallographic phase of the film progressively from pure \alpha-Ti, through an \alpha-Ti phase with interstitial nitrogen, to stoichiometric Ti2N, and through a substoichiometric TiNX to stoichiometric TiN. These changes also affect the superconducting transition temperature, Tc, allowing, the superconducting properties to be tailored for specific applications. After decreasing from a Tc of 0.4 K for pure Ti down to below 50 mK at the Ti2N point, the Tc then increases rapidly up to nearly 5 K over a narrow range of nitrogen incorporation. This very sharp increase of Tc makes it difficult to control the properties of the film from wafer-to-wafer as well as across a given wafer to within acceptable margins for device fabrication. Here we show that the nitrogen composition and hence the superconductive properties are related to, and can be determined by, spectroscopic ellipsometry. Therefore, this technique may be used for process control and wafer screening prior to investing time in processing devices

    Etch Induced Microwave Losses in Titanium Nitride Superconducting Resonators

    Full text link
    We have investigated the correlation between the microwave loss and patterning method for coplanar waveguide titanium nitride resonators fabricated on Si wafers. Three different methods were investigated: fluorine- and chlorine-based reactive ion etches and an argon-ion mill. At high microwave probe powers the reactive etched resonators showed low internal loss, whereas the ion-milled samples showed dramatically higher loss. At single-photon powers we found that the fluorine-etched resonators exhibited substantially lower loss than the chlorine-etched ones. We interpret the results by use of numerically calculated filling factors and find that the silicon surface exhibits a higher loss when chlorine-etched than when fluorine-etched. We also find from microscopy that re-deposition of silicon onto the photoresist and side walls is the probable cause for the high loss observed for the ion-milled resonator

    Coherence in a transmon qubit with epitaxial tunnel junctions

    Full text link
    We developed transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T1 is .72-.86mu sec and the ensemble dephasing time T2 is slightly larger than T1. The dephasing time T2 (1.36mu sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements

    Effect of Glucose–Insulin–Potassium Infusion on Mortality in Critical Care Settings: A Systematic Review and Meta-Analysis

    Get PDF
    This study seeks to measure the treatment effect of glucose—insulin—potassium (GIK) infusion on mortality in critically ill patients. A systematic review of randomized controlled trials is conducted, comparing GIK treatment with standard care or placebo in critically ill adult patients. The primary outcome variable is mortality. Two authors independently extract data and assess study quality. The primary analysis is based on the random effects model to produce pooled odds ratios (ORs) with 95% confidence intervals (CIs). The search yields 1720 potential publications; 23 studies are included in the final analysis, providing a sample of 22 525 patients. The combined results demonstrate no heterogeneity (P = .57, I2 = 0%) and no effect on mortality (OR = 1.02; 95% CI, 0.93–1.11) with GIK treatment. No experimental studies of shock or sepsis populations are identified. This meta-analysis finds that there is no mortality benefit to GIK infusion in critically ill patients; however, study populations are limited to acute myocardial infarction and cardiovascular surgery patients. No studies are identified using GIK in patients with septic shock or other forms of circulatory shock, providing an absence of evidence regarding the effect of GIK as a therapy in patients with shock

    Development and comparison of a minimally-invasive model of autologous clot pulmonary embolism in Sprague-Dawley and Copenhagen rats

    Get PDF
    Background Experimental models of pulmonary embolism (PE) that produce pulmonary hypertension (PH) employ many different methods of inducing acute pulmonary occlusion. Many of these models induce PE with intravenous injection of exogenous impervious objects that may not completely reproduce the physiological properties of autologous thromboembolism. Current literature lacks a simple, well-described rat model of autlogous PE. Objective: Test if moderate-severity autologous PE in Sprague-Dawley (SD) and Copenhagen (Cop) rats can produce persistent PH. Methods blood was withdrawn from the jugular vein, treated with thrombin-Ca++ and re-injected following pretreatment with tranexamic acid. Hemodynamic values, clot weights and biochemical measurements were performed at 1 and 5 days. Results Infusion of clot significantly increased the right ventricular peak systolic pressure to 45-55 mm Hg, followed by normalization within 24 hours in SD rats, and within 5 days in COP rats. Clot lysis was 95% (24 hours) and 97% (5 days) in SD rats and was significantly lower in COP rats (70%, 24 hours; 87% 5 days). Plasma D-dimer was elevated in surgical sham animals and was further increased 8 hours after pulmonary embolism. Neither strain showed a significant increase in bronchoalveolar chemotactic activity, myeloperoxidase activity, leukocyte infiltration, or chemokine accumulation, indicating that there was no significant pulmonary inflammation. Conclusions Both SD and COP rats exhibited near complete fibrinolysis of autologous clot PE within 5 days. Neither strain developed persistent PH. Experimental models of PE designed to induce sustained PH and a robust inflammatory response appear to require significant, persistent pulmonary vascular occlusion

    The Design and Validation of the Quantum Mechanics Conceptual Survey

    Full text link
    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper we describe the design and validation of the survey, a process that included observations of students, a review of previous literature and textbooks and syllabi, faculty and student interviews, and statistical analysis. We also discuss issues in the development of specific questions, which may be useful both for instructors who wish to use the QMCS in their classes and for researchers who wish to conduct further research of student understanding of quantum mechanics. The QMCS has been most thoroughly tested in, and is most appropriate for assessment of (as a posttest only), sophomore-level modern physics courses. We also describe testing with students in junior quantum courses and graduate quantum courses, from which we conclude that the QMCS may be appropriate for assessing junior quantum courses, but is not appropriate for assessing graduate courses. One surprising result of our faculty interviews is a lack of faculty consensus on what topics should be taught in modern physics, which has made designing a test that is valued by a majority of physics faculty more difficult than expected.Comment: Submitted to Physical Review Special Topics: Physics Education Researc

    Medical student use of communication elements and association with patient satisfaction: a prospective observational pilot study

    Get PDF
    BACKGROUND: Effective communication with patients impacts clinical outcome and patient satisfaction. We measure the rate at which medical students use six targeted communication elements with patients and association of element use with patient satisfaction. METHODS: Participants included fourth year medical students enrolled in an emergency medicine clerkship. A trained observer measured use of six communication elements: acknowledging the patient by name, introducing themselves by name, identifying their role, explaining the care plan, explaining that multiple providers would see the patient, and providing an estimated duration of time in the emergency department. The observer then conducted a survey of patient satisfaction with the medical student encounter. RESULTS: A total of 246 encounters were documented among forty medical student participants. For the six communication elements evaluated, in 61% of encounters medical students acknowledged the patient, in 91% they introduced themselves, in 58 % they identified their role as a student, in 64% they explained the care plan, in 80% they explained that another provider would see the patient, and in only 6% they provided an estimated duration of care. Only 1 encounter (0.4%) contained all six elements. Patients' likelihood to refer a loved one to that ED was increased when students acknowledged the patient and described that other providers would be involved in patient care (P = 0.016 and 0.015 respectively, Chi Square). Likewise, patients' likelihood to return to the ED was increased when students described their role in patient care (P = 0.035, Chi Square). CONCLUSIONS: This pilot study demonstrates that medical students infrequently use all targeted communication elements. When they did use certain elements, patient satisfaction increased. These data imply potential benefit to additional training for students in patient communication

    Association Between Early Hyperoxia Exposure After Resuscitation From Cardiac Arrest and Neurological Disability: Prospective Multicenter Protocol-Directed Cohort Study

    Get PDF
    BACKGROUND: Studies examining the association between hyperoxia exposure after resuscitation from cardiac arrest and clinical outcomes have reported conflicting results. Our objective was to test the hypothesis that early postresuscitation hyperoxia is associated with poor neurological outcome. METHODS: This was a multicenter prospective cohort study. We included adult patients with cardiac arrest who were mechanically ventilated and received targeted temperature management after return of spontaneous circulation. We excluded patients with cardiac arrest caused by trauma or sepsis. Per protocol, partial pressure of arterial oxygen (Pao2) was measured at 1 and 6 hours after return of spontaneous circulation. Hyperoxia was defined as a Pao2 >300 mm Hg during the initial 6 hours after return of spontaneous circulation. The primary outcome was poor neurological function at hospital discharge, defined as a modified Rankin Scale score >3. Multivariable generalized linear regression with a log link was used to test the association between Pao2 and poor neurological outcome. To assess whether there was an association between other supranormal Pao2 levels and poor neurological outcome, we used other Pao2 cut points to define hyperoxia (ie, 100, 150, 200, 250, 350, 400 mm Hg). RESULTS: Of the 280 patients included, 105 (38%) had exposure to hyperoxia. Poor neurological function at hospital discharge occurred in 70% of patients in the entire cohort and in 77% versus 65% among patients with versus without exposure to hyperoxia respectively (absolute risk difference, 12%; 95% confidence interval, 1-23). Hyperoxia was independently associated with poor neurological function (relative risk, 1.23; 95% confidence interval, 1.11-1.35). On multivariable analysis, a 1-hour-longer duration of hyperoxia exposure was associated with a 3% increase in risk of poor neurological outcome (relative risk, 1.03; 95% confidence interval, 1.02-1.05). We found that the association with poor neurological outcome began at ≥300 mm Hg. CONCLUSIONS: Early hyperoxia exposure after resuscitation from cardiac arrest was independently associated with poor neurological function at hospital discharge
    corecore