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Abstract

Background—Studies examining the association between hyperoxia exposure after resuscitation 

from cardiac arrest and clinical outcomes have reported conflicting results. Our objective was to 

test the hypothesis that early post-resuscitation hyperoxia is associated with poor neurological 

outcome.

Methods—Multi-center, prospective cohort study. We included adult, cardiac arrest patients who 

were mechanically ventilated and received targeted temperature management after return of 

spontaneous circulation (ROSC). We excluded patients with cardiac arrest due to trauma or sepsis. 

Per protocol, partial pressure of arterial oxygen (PaO2) was measured at one and six hours after 

ROSC. Hyperoxia was defined as a PaO2 > 300 mmHg during the initial six hours after ROSC. 

The primary outcome was poor neurological function at hospital discharge, defined as a modified 

Rankin Scale > 3. Multivariable generalized linear regression with a log link was used to test the 

association between PaO2 and poor neurological outcome. To assess if there was an association 
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between other supranormal PaO2 levels and poor neurological outcome, we used other PaO2 cut 

points to define hyperoxia (i.e. 100, 150, 200, 250, 350, 400 mmHg).

Results—Of the 280 patients included, 105 (38%) had exposure to hyperoxia. Poor neurological 

function at hospital discharge occurred in 70% of patients in the entire cohort, and 77% vs. 65% 

among patients with and without exposure to hyperoxia respectively [absolute risk difference 12% 

(95% CI 1% – 23%)]. Hyperoxia was independently associated with poor neurological function, 

relative risk 1.23 (95% CI 1.11 - 1.35). On multivariable analysis, a one-hour longer duration of 

hyperoxia exposure was associated with a 3% increase in risk of poor neurological outcome 

[relative risk 1.03 (95% CI 1.02 - 1.05)]. We found the association with poor neurological outcome 

began at 300 mmHg or higher.

Conclusions—Early hyperoxia exposure after resuscitation from cardiac arrest was 

independently associated with poor neurological function at hospital discharge.
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Introduction

Post-cardiac arrest syndrome is a unique pathophysiological condition characterized by 

systemic post-resuscitation ischemia/reperfusion injury commonly resulting in neurological 

damage.1, 2 The in-hospital mortality among individuals with post-cardiac arrest syndrome is 

over 50%, and among those that survive, many are left with permanent and severe 

neurological disability.3 The identification of new therapies to attenuate the ongoing brain 

injury in this patient population is of the utmost importance given that cardiac arrest occurs 

in over 400,000 people each year in the United States alone.4

Exposure to hyperoxia [supranormal partial pressure of arterial oxygen (PaO2) due to high 

fractions of inspired oxygen (FiO2)] following resuscitation is previously demonstrated to 

amplify the production of oxygen free radicals, resulting in neuronal injury and death via 

cellular metabolic failure and apoptosis.5, 6 Current post-resuscitation guidelines recommend 

titrating the FiO2 in post-cardiac arrest patients to avoid hypoxia, and prolonged exposure to 

hyperoxia (most commonly defined as PaO2 > 300 mmHg).7–9 Our group previously 

published a retrospective registry study demonstrating an association between post-

resuscitation exposure to PaO2 > 300 mmHg and in-hospital mortality.10 However, 

subsequent observational studies examining the associations between hyperoxia and clinical 

outcomes have reported conflicting results.10–16 All previous studies have methodological 

limitations. They were mostly retrospective in nature, used varying methodologies to define 

PaO2 derangements, and most evaluated arterial blood gas (ABG) measurements over the 

first 24 hours after return of spontaneous circulation (ROSC) rather than focusing on the 

period immediately after ROSC when the brain is likely most susceptible to additional 

reperfusion injury. By their design, these previous studies were subject to measurement bias, 

as they relied on ABG results ordered at the discretion of treating physicians, as opposed to 

protocol-directed ABG measurements at specific time points.

Roberts et al. Page 2

Circulation. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We performed a fully prospective, multi-center study using protocol-directed ABG 

measurements in the early hours following resuscitation and protocol directed assessments 

of neurological disability, as opposed to chart review. Our main objective was to test the 

association between early post-resuscitation hyperoxia and poor neurological outcome 

among adult patients successfully resuscitated from cardiac arrest.

Methods

Setting

We performed a prospective cohort study across six hospitals in the United States: 1) Cooper 

University Hospital, Camden, NJ (coordinating center); 2) Hospital of the University of 

Pennsylvania, Philadelphia, PA; 3) Penn-Presbyterian Medical Center, Philadelphia, PA; 4) 

Methodist Hospital, Indianapolis, IN; 5) University of Mississippi Medical Center, Jackson, 

MS; and 6) Beth Israel Deaconess Medical Center, Boston, MA. We prospectively collected 

data pertaining to the index cardiac arrest event, and outcomes consistent with the Utstein 

style for reporting cardiac arrest research, including all post-ROSC variables recommended 

for post-resuscitation research.17, 18 Each of the participating centers had a mechanism in 

place for real-time notification of study personnel when an out-of-hospital cardiac arrest 

patient arrives in the emergency department (ED) or when a cardiac arrest occurs in-hospital. 

This study was approved by the institutional review board at each participating institution 

and each subject gave written informed consent. This study is reported in accordance with 

the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

Statement.19 After review and approval by our study data use committee, we will allow other 

researchers who submit to us a protocol to have unrestricted access to our complete de-

identified database in comma separated value format, together with a data dictionary.

Participants

We enrolled adult post-cardiac arrest patients who were comatose after ROSC between July 

2013 and March 2017. The inclusion criteria were: 1) age ≥ 18 years; 2) cardiac arrest, 

defined as a documented absence of pulse and cardiopulmonary resuscitation (CPR) 

initiated; 3) ROSC > 20 min; 4) mechanically ventilated after ROSC; and 5) clinician intent 

to perform targeted temperature management. We decided to include patients with both in- 

and out-of-hospital cardiac arrest, as this would generate a pragmatic study whose results 

could be broadly applicable to as many cardiac arrest patients as possible. We excluded 

patients with presumed etiology of arrest secondary to trauma, hemorrhage or sepsis; 

residents of a nursing home or other long-term care facility; pregnancy; prisoners; and 

terminal illness with no reasonable expectation to survive to hospital discharge or known 

lack of commitment to aggressive support by next of kin. We also excluded patients who 

died prior to an arterial blood gas analysis being obtained.

Standard Care

Routine post-cardiac arrest care across all sites consisted of standard elements recommended 

by the American Heart Association Guidelines for Cardiopulmonary Resuscitation and 

Emergency Cardiovascular Care and included: (1) targeted temperature management for 24 

hours after ROSC; (2) controlled rewarming to avoid hyperpyrexia with targeted temperature 
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management; (3) 24/7 capability for goal-directed hemodynamic support interventions; (4) 

24/7 capability for interventional cardiac catheterization (if needed); (5) 24/7 capability for 

continuous electroencephalographic monitoring; and (6) evidence-based approach to 

neurological prognostication, specifically waiting >72 hours after ROSC before support 

limitations for poor neurological prognosis.7, 20

Data Collection

As part of our research protocol we obtained an initial arterial blood gas (ABG) one hour (± 

two hours) after ROSC and a second ABG six hours (± two hours) after ROSC. At the time 

of ABG collection we also recorded the plateau airway pressure during an inspiratory hold 

on the ventilator. We recorded all additional ABG analyses ordered by the treating physician 

as well as all ventilator changes and the time the changes were made. The arterial oxygen 

saturation (SaO2) and the fraction of inspired oxygen (FiO2) were continuously monitored 

and recorded every 15 min for the initial six hours after ROSC. For both SaO2 and FiO2 the 

time-weighted average was calculated. To calculate the time-weighted average for each 

subject, we multiplied the length of time that the patient spent at a specific SaO2 value by 

that SaO2 value, added all these values together, and then divided by the total length of post-

resuscitation observation time.21 We performed the same calculation for FiO2. We 

prospectively captured all the components of the Sequential Organ Failure Assessment 

(SOFA) score (i.e. respiratory, coagulation, hepatic, renal, cardiovascular, and neurological) 

during the first 24 hours after ROSC.22 For calculation of the SOFA score, we used the worst 

value for each component during the initial six-hour period after ROSC and excluded the 

neurological and respiratory components.22–24 We abstracted clinical data from the medical 

record into a Research Electronic Data Capture (REDCap, Vanderbilt University, TN) 

database, and exported into Stata/SE 14.1 for Mac, StataCorp LP (College Station, TX, 

USA) for analysis.25

Outcome measures

The primary outcome was poor neurological function or death at hospital discharge, defined 

a priori as a modified Rankin Scale (mRS) > 3.26 The mRS is a well-validated scale of 

neurological disability, which is widely used to measure outcome in stroke clinical trials (0: 

no symptoms, 1: no significant disability, 2: slight disability, 3: moderate disability, 4: 

moderate severe disability, 5: severe disability, 6: death). All raters were trained and certified 

in mRS assessment27 and used a structured questionnaire and interview, which have been 

shown to produce strong interobserver reliability.28, 29 Secondary outcomes were in-hospital 

mortality and early neurological injury defined as a Full Outline of UnResponsiveness 

(FOUR) score ≤ 6 at 72 hours after ROSC, based on previous literature.30, 31 The FOUR 

score is a well-validated scale of neurological injury for comatose patients. The FOUR score 

has 4 components: eye responses, motor responses, brainstem reflexes, and respiration 

pattern, and ranges from 0 to 16 with lower scores demonstrating worse injury.32

Data Analysis

Categorical variables were compared using the chi-square test. Continuous variables were 

compared using student t-test or Wilcoxon rank-sum test, based on the distribution of the 

data. We used Spearman’s correlation coefficient (r) to assess the relationship between 1- 
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and 6-hour PaO2, and the corresponding FiO2 and SaO2. We used multivariable logistic 

regression analysis to identify what patient and management characteristics were associated 

with hyperoxia (see Supplemental Methods).

For the primary outcome, we calculated relative risk (RR) using multivariable generalized 

linear regression with a log link33 to test if exposure to hyperoxia during the initial six hours 

after ROSC was an independent predictor of poor neurologic function at hospital discharge. 

We a priori defined hyperoxia as PaO2 > 300 mmHg on one or more ABG analyses, based 

on previously described definition for hyperoxia.6, 7, 10, 13 A priori, we selected the 

following candidate variables for the regression model on the grounds that they were 

previously demonstrated to predict outcome in post–cardiac arrest patients: (1) age (decile); 

(2) initial cardiac rhythm [asystole or pulseless electrical activity (PEA) vs. ventricular 

fibrillation/pulseless ventricular tachycardia (VF/VT)];34 (3) metabolic acidosis (defined as 

one or more recorded base deficit ≤ -6 during the initial six hours after ROSC, based on 

previously published literature);35 (4) arterial hypotension (mean arterial pressure < 70 

mmHg during the initial six hours after ROSC);21 (5) pre-arrest comorbidities (i.e., Charlson 

comorbidities index);36 (6) prolonged duration of CPR (CPR duration > 20 min);37 and (7) 

location of cardiac arrest (in- vs. out-of-hospital).38–41 Backward elimination with a 

criterion of p < 0.05 for retention in the model was used. Statistical interactions and 

collinearity were assessed. Goodness of fit of the model was evaluated with the deviance 

test. This analysis was repeated for both secondary outcomes. For the main analyses listwise 

deletion was used for missing co-variables. We also report results using multiple imputation 

for missing co-variables. These models used robust standard error and took into account the 

random effects at the institution (i.e. site of enrollment) level.

We performed several additional pre-planned sensitivity analyses for the primary outcome. 

First, we entered additional covariates beyond those pre-specified into a multivariable 

generalized linear regression model with a log link. Second, we assessed whether cardiac 

arrest location (pre-hospital or in-hospital) had different results. Finally, we performed a 

sensitivity analysis limited to only patients who survived to hospital discharge (detailed 

description of sensitivity analyses is discussed in Supplemental Methods).

We also examined the association between PaO2 and outcome across different thresholds to 

define hyperoxia (i.e. PaO2 > 100, 150, 200, 250, 300, 350, and 400 mmHg on one or more 

ABG analyses). We entered each threshold into a multivariable generalized linear regression 

model with a log link and calculated relative risks with 95% confidence intervals (CI) for 

poor neurological outcome adjusting for candidate variables retained in the original model. 

We graphed the relative risks with 95% CI and inspected the graph to assess if there was a 

threshold signal for neurological outcome over increasing PaO2 cut points.

To reflect the duration of hyperoxia exposure during the initial six hours after ROSC, we 

used the first PaO2 measurement to represent the PaO2 exposure during the time from ROSC 

to the first ABG measurement. We then calculated the time intervals between ABG 

measurements and inferred that the PaO2 remained constant at the level observed in the 

earlier measurement until the time point of the subsequent measurement (i.e. last value 

carried forward). Similar methodology to estimate PaO2 exposure has been used previously.
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16 We then added up the total time patients had exposure to hyperoxia during the initial six 

hours after ROSC. To test the impact of duration of hyperoxia exposure, we entered duration 

of exposure as a continuous variable (calibrated for one hour) into a multivariable 

generalized linear regression model with a log link adjusting for the candidate variables 

retained in the original model. Given some subjects had ABG analyses ordered by treating 

physicians in addition to the protocol, we adjusted the model for the total number of ABG 

analyses obtained during the initial six hours after ROSC, as well as time to first ABG.

Sample size calculation

We estimated the necessary sample size based on the following assumptions: a) a predicted 

event (i.e. survival with good neurological function) rate of 29%;21 and b) an estimated 

event (survival with good neurological function) per covariate ratio of 10:1 necessary for 

multivariable modeling.42, 43 To accrue the necessary 80 survivors with good neurological 

function we estimated that a minimum of 276 total subjects would be necessary and we 

planned to enroll 280.

Results

A total of 2084 subjects were screened for inclusion and 280 were included in the final 

cohort (Figure 1). We were unable to obtain informed consent for 326 patients (e.g. no 

surrogate decision maker available or declined consent). Compared to those excluded due to 

lack of informed consent, the study sample had a similar mean (SD) age 59 (16) vs. 59 (15), 

respectively. However, we found our study sample had a higher rate of VF/VT [37% vs. 

21%] and longer duration of CPR [median (IQR) 15 (8–23) vs. 10 (1–22)]. Of those 

included 105 (38%) had exposure to hyperoxia and 175 (62%) had no exposure to hyperoxia 

during the initial six hours after ROSC. The median (IQR) time from ROSC to the first ABG 

analysis was 59 (35–103) min and the median (IQR) number of ABG analyses during the 

initial six hours after ROSC was 2 (2–3).

Table 1 displays the baseline data for all subjects in the cohort, as well as for subjects with 

and without exposure to hyperoxia. Out-of-hospital cardiac arrest with PEA/asystole as the 

initial rhythm was the most common type of cardiac arrest [109/280 (39%)], followed by 

out-of-hospital cardiac arrest with pulseless VF/VT as the initial rhythm [86/280 (31%)]. 

Initial rhythm was unclear for 23 (8%) and downtime was unknown for 5 (<2%) of patients. 

We found no differences in age, cardiac arrest characteristics or comorbidities between those 

exposed and unexposed to hyperoxia. Table 2 displays post-cardiac arrest data for all 

subjects. All patients were mechanically ventilated and received targeted temperature 

management after ROSC. Percutaneous coronary intervention (PCI) was performed within 

the first 36 hours in 22/86 (26%) of patients with out-of-hospital, pulseless VF/VT cardiac 

arrest. The median (IQR) SOFA score was lower among subjects with exposure to hyperoxia 

[4 (2–7)] compared to those without exposure [5 (3–7)]; however, this was not found to be 

statistically significant (Wilcoxon rank sum test p = 0.119). We found a poor correlation 

between PaO2 and SaO2 (r = 0.23), as well as PaO2 and FiO2 (r = 0.27). In addition, SaO2 

could not reliably rule out the presence of hyperoxia exposure, and PaO2 as high as 295 

mmHg occurred with FiO2 of 0.40 (Supplemental Figures 1–3). The only management 
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characteristics found to be independent predictors of hyperoxia at 0- or 6-hours were FiO2 

and PEEP, odds ratios 1.08 (95% CI 1.05–1.11) and 0.83 (95% CI 0.70–0.97) respectively 

(Supplemental Table 1).

Seventy percent of subjects had the primary outcome of poor neurological function or death 

at hospital discharge. Study subjects with exposure to hyperoxia had a higher incidence of 

poor neurological function at hospital discharge than patients with no exposure (77% vs. 

65% respectively, absolute risk difference 12% (95% CI 1% - 23%, p = 0.035]. Figure 2 

displays the proportion of subjects with each mRS score stratified by hyperoxia exposure 

(yes/no). The overall in-hospital mortality for the entire cohort was 55%. The mortality rate 

was 59% versus 52% among those with and without hyperoxia exposure respectively (p = 

0.251). Two hundred and twenty five subjects survived to 72 hours and had a FOUR score 

measurement. The median (IQR) FOUR score at 72 hours was 8 (3–13) for the entire cohort, 

and 7 (3–13) vs. 10 (4–13) among patients with and without hyperoxia respectively 

(Wilcoxon rank sum test p = 0.148). Forty-seven percent vs. 35% had early neurological 

injury at 72 hours among patients with and without hyperoxia respectively (p = 0.073). The 

FOUR score among those who died after 72 hours was significantly lower compared to 

those who survived to hospital discharge [3 (0–7) vs. 13 (10–16) Wilcoxon rank sum test p < 

0.001], suggesting those who died had significant neurological injury prior to death.

Table 3 displays the results of the multivariable regression models for the primary outcome 

as well as both secondary outcomes. After adjusting for potential baseline and post-cardiac 

arrest confounders, hyperoxia was an independent predictor of poor neurological function at 

hospital discharge, relative risk 1.23 (95% CI 1.11 - 1.35), as well as early neurological 

injury. Hyperoxia was found to be associated with in-hospital mortality when multiple 

imputation was used (see Supplemental Tables 2–7 for results of the full regression models).

For the first sensitivity analysis of the primary outcome, several variables were statistically 

different at p < 0.10 when comparing hyperoxia and no hyperoxia groups: gender, mean 

positive end expiratory pressure (PEEP), plateau airway pressure > 30 cmH2O, time-

weighted average SaO2, time from ROSC to first ABG analysis, and mean PaCO2 during the 

initial six hours after ROSC. After adjusting for these identified potential confounders, 

hyperoxia remained an independent predictor of poor neurological outcome, relative risk 

1.23 (95% CI 1.05–1.44) (Supplemental Table 8). We did not find evidence that the 

association between hyperoxia and poor neurological outcome differed between cardiac 

arrest locations (Supplemental Table 9). Among patients who survived to hospital discharge, 

33% had poor neurological outcome at hospital discharge. Hyperoxia remained an 

independent predictor of poor neurological outcome among survivors to hospital discharge, 

relative risk 1.42 (95% CI 1.09–1.87) (Supplemental Table 10).

Figure 3 displays adjusted relative risks with 95% CI for poor neurological outcome across 

ascending cut points used to define hyperoxia. Only PaO2 cut points of 300 mmHg and 

greater were found to be significantly associated with poor neurological outcome.

During the initial six hours after ROSC, after adjusting for potential baseline and post-

cardiac arrest confounders and total number of ABG analyses, a one-hour longer duration of 
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hyperoxia exposure was associated with a 3% increase in risk of poor neurological outcome 

[relative risk 1.03 (95% CI 1.02 - 1.05)] (Supplemental Table 11).

Discussion

In this prospective, multi-center study, using a standardized protocol for ABG 

measurements, we tested whether exposure to hyperoxia after resuscitation from cardiac 

arrest was associated with poor neurological function at hospital discharge. We found 38% 

of patients had exposure to hyperoxia during the early hours following resuscitation, and that 

hyperoxia exposure after ROSC was an independent predictor of poor neurological function 

at hospital discharge. Our results suggest that the association between supranormal levels of 

PaO2 and poor neurological outcome begins at a PaO2 of 300 mmHg and higher. In addition, 

we found an association between duration of hyperoxia exposure and neurological outcome. 

In our multivariable models we also found hyperoxia to be independently associated with 

early neurological injury and our results suggest hyperoxia is associated with in-hospital 

mortality. Early neurological injury was common among subjects who died in hospital, 

suggesting that neurological injury was a major factor for mortality. Thus, it is reasonable to 

infer that hyperoxia’s association with mortality is mediated by early neurological injury. 

Finally, we found that SaO2 and FiO2 levels could not reliably rule out exposure to 

hyperoxia; therefore, frequent ABG measurements may be needed to avoid hyperoxia 

exposure. Although we found a weak correlation between FiO2 and PaO2 on univariable 

analysis, when adjusted for other ventilator settings and patient characteristics we found 

higher FiO2 was a predictor of hyperoxia exposure. We also found higher PEEP to have a 

negative association with hyperoxia exposure. Higher PEEP strategies are often employed in 

patients with lung injury who have higher oxygen requirements. Thus, elevated PEEP may 

be a marker for patients who are more difficult to oxygenate and thus less likely to develop 

hyperoxia. In summary, in this prospective, multi-center study using protocol-directed ABG 

measurements, we found that hyperoxia during the early period after ROSC is associated 

with poor neurological outcome.

Hyperoxia is postulated to cause harm in the context of reperfusion injury by increasing the 

formation of reactive oxygen species resulting in oxidative impairment of mitochondrial 

respiration and cerebral energy metabolism. Oxidative modification of mitochondrial 

proteins may disable brain pyruvate dehydrogenase complex activity,44 the only bridge 

between anaerobic and aerobic metabolism. In addition, oxidative stress activates the 

mitochondrial permeability transition pore to release NAD(H) into the cytosol, depleting a 

vital metabolic cofactor.45 Metabolic failure may ensue, resulting in decreased cerebral 

consumption of glucose and oxygen, increased production of lactate, and delayed neuronal 

cell death.46, 47 Furthermore, increased reactive oxygen species may impair electron 

transport chain activity by forming mitochondrial membrane pores that release cytochrome c 
into the cytosol,45 resulting in caspase-dependent apoptosis. Increased reactive oxygen 

species may also cause oxidation of brain lipids (i.e. lipid peroxidation), which may have 

physiologic (e.g. alteration of blood flow, neutrophil chemoattraction) and cellular toxic 

effects (e.g. excitotoxicity, neurodegeneration),48, 49 as well as promote cellular 

inflammatory reactions, specifically the activation of microglia and astrocytes in the 

neuronal microenvironment leading to increased neuronal cell death.50 Additionally, 
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hyperoxia may also have a direct vasoconstrictor effect, which may reduce cerebral blood 

flow after ROSC, exacerbating ischemic injury.51, 52

Preclinical studies support the hypothesis that hyperoxia after ROSC worsens brain damage, 

as evidenced on functional neurological testing48, 50, 53 and histopathology,47, 54 and 

decreases survival.49 A recent randomized clinical trial of patients with acute myocardial 

infarction found no decrease in mortality at one year with the use of supplemental oxygen 

compared to room air.55 In addition, a randomized clinical trial of supplemental oxygen 

versus no supplemental oxygen in patients with ST-elevation myocardial infarction found 

supplemental oxygen increased the risk of recurrent myocardial infarction and cardiac 

arrhythmias, and increased myocardial infarct size at six months, suggesting higher PaO2 

levels worsen myocardial reperfusion injury.56

Current post-resuscitation guidelines recommend that if the SaO2 is greater than 98% during 

the early period after cardiac arrest, the FiO2 should be titrated down to avoid prolonged 

exposure to hyperoxia.7–9 However, the current data on hyperoxia after resuscitation from 

cardiac arrest have significant limitations and are mostly from retrospective cohort studies, 

with conflicting results.10–16, 57, 58 Interpreting the current literature is difficult secondary to 

heterogeneity in methodologies used to define PaO2 derangements and outcomes. In 

addition, none of these previous studies used protocol-directed ABG measurements at 

specific time points causing concern for measurement bias. A recent systematic review and 

meta-analysis of observational studies found hyperoxia to be associated with in-hospital 

mortality; however, the authors of this meta-analysis warn these results should be interpreted 

with caution as there was significant heterogeneity between studies.59

A recent cohort study with historical controls found that initiating conservative oxygen 

therapy targeting a SaO2 of 88–92% using the lowest possible FiO2 among post-cardiac 

arrest patients admitted to the intensive care unit, was feasible and decreased ICU length of 

stay, but did not improve survival to hospital discharge.60 Of note, all patients in both the 

titrated and the conventional oxygen therapy groups in this previous study had PaO2 levels 

less than 200 mmHg, thus these results do not help inform the effects of PaO2 above 200 

mmHg. To date there have been two randomized control trials evaluating the effects of 

supranormal PaO2 levels after resuscitation from cardiac arrest. One study randomized 28 

subjects to a FiO2 of 0.30 versus 1.0 and found conservative oxygen therapy was safe.61 

This trial found no difference in serum neuron specific enolase (NSE), a marker of neuronal 

injury, in the entire cohort, but found use of 0.30 oxygen was associated with decreased level 

of NSE at 24 hours in patients not treated with targeted temperature management. A second 

study in the pre-hospital setting randomized 18 subjects to standard care (highest possible 

oxygen flow rate) versus oxygen titration (targeting SaO2 90–94%).62 This trial was 

terminated early due to increased hypoxia episodes in the oxygen titration group. These data 

suggest titration of FiO2 is perhaps more appropriately managed in the hospital setting.

The results in this current study prospectively validate our previous findings that a PaO2 > 

300 mmHg is associated with poor clinical outcomes.10 These findings, in conjunction with 

the current body of literature evaluating the association between PaO2/supplemental oxygen 

and clinical outcomes during reperfusion injury, support current post-cardiac arrest guideline 
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recommendations to avoid prolonged exposure to hyperoxia. This study has important 

implications for future design of clinical trials aimed at identifying an optimal PaO2 after 

ROSC. Specifically, given the current evidence of an association with harm, and no evidence 

to suggest any potential benefit, such trials should focus on testing varying PaO2 ranges 

below 300 mmHg, as at this time there is currently insufficient equipoise to ethically 

randomize subjects to a PaO2 > 300 mmHg.

We acknowledge that this study has important limitations to consider. First, this was an 

observational study and thus we can only report association rather than infer causation. 

Second, although we used multivariable linear regression with a log link and multiple 

sensitivity analyses to adjust for potential confounders, there still exists the potential of 

unmeasured confounders. Third, in contrast to some resuscitation clinical investigations we 

included patients with both in- and out-of-hospital cardiac arrest. We felt this was necessary 

to allow for a more pragmatic study, in which the results can be applicable to the largest 

possible patient population. In the present study, arrest location was not associated with 

outcome. In addition, on sensitivity analysis we did not find evidence that the association 

between hyperoxia and poor neurological outcome differs between arrest locations (i.e. 

arrest location was not an effect modifier). Fourth, 326 subjects were excluded secondary to 

inability to obtain informed consent. Although we found similar mean ages between our 

study sample and those subjects excluded due to lack of informed consent, we found our 

study population had a higher rate of VT/VF and longer duration of CPR, suggesting some 

difference between our study sample and those excluded due to lack of informed consent, 

potentially introducing selection bias. Of note, 29% of subjects screened for inclusion who 

underwent CPR for cardiac arrest were excluded secondary to known lack of commitment to 

aggressive support. These patients likely underwent CPR secondary to the treatment team 

being unaware of the patient’s wishes (i.e. unavailable or no advanced directive) or family 

made the decision to withdraw care shortly after ROSC. Fifth, we found discordance 

between the measured PaO2 and corresponding SaO2. This discordance is likely secondary 

to poor SaO2 sensing, and demonstrates the limitations of pulse oximetry and underscores 

the importance of obtaining an ABG for PaO2 monitoring. Sixth, for estimating the duration 

of hyperoxia exposure we assumed the PaO2 level remained constant between ABG 

analyses. It is possible that the PaO2 level varied during this time allowing for potential 

measurement bias. Finally, it remains possible that hyperoxia reflects a patient population 

that is more ill and therefore has a higher likelihood to have poor neurological outcome. 

However, we did not observe any significant differences in the duration of CPR, post-

resuscitation SOFA score, incidence of post-resuscitation arterial hypotension or vasopressor 

administration, or degree of metabolic acidosis between the two groups, suggesting this was 

not the case.

Conclusion

Early hyperoxia exposure after resuscitation from cardiac arrest is independently associated 

with death and poor neurological function at hospital discharge. The increased risk of poor 

neurological function appears to begin at a PaO2 of 300 mmHg.
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Clinical Perspective

What’s new

• In this prospective multi-center protocol-directed cohort study that included 

280 adult post-cardiac arrest patients, early hyperoxia exposure [partial 

pressure of arterial oxygen (PaO2) > 300 mmHg during the first six hours 

after return of spontaneous circulation (ROSC)] was an independent predictor 

of poor neurological function at hospital discharge after adjusting for 

potential baseline and post-cardiac arrest confounders, relative risk 1.23 (95% 

CI 1.11 - 1.35).

What are the clinical implications

• Early hyperoxia exposure after resuscitation from cardiac arrest is 

independently associated with death and poor neurological function at 

hospital discharge. The increased risk of poor neurological function appears 

to begin at a PaO2 of 300 mmHg.
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Figure 1. 
Study flow diagram

ROSC, return of spontaneous circulation
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Figure 2. 
Modified Rankin Scale at hospital discharge stratified by no hyperoxia (gray columns) and 

hyperoxia (black columns).

mRS: 0, no symptoms; 1, no significant disability; 2, slight disability; 3, moderate disability; 

4, moderate severe disability; 5, severe disability; 6, death
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Figure 3. 
Adjusted relative risks (squares) with 95% confidence intervals (horizontal lines) for poor 

neurological outcome [defined as modified Rankin Scale (mRS) > 3] across ascending cut 

points to define hyperoxia.

*Relative risks were calculated using multivariable linear regression analysis (with a log 

link) adjusting for age, initial cardiac rhythm, metabolic acidosis, arterial hypotension, pre-

arrest comorbidities, and prolonged duration of cardiopulmonary resuscitation.

Cut point No Hyperoxia
n (Proportion with mRS > 3)

Hyperoxia
n (Proportion with mRS >3)

100 40 (60%) 240 (71%)

150 77 (64%) 203 (72%)

200 114 (67%) 166 (72%)

250 139 (66%) 141 (73%)

300 175 (65%) 105 (77%)

350 199 (65%) 81 (80%)

400 216 (67%) 64 (78%)
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Table 1

Baseline data for all subjects at the time of cardiac arrest.

Variables All Subjects
n = 280

No Hyperoxia
n = 175

Hyperoxia*
n = 105

p - value

Age [years (SD)] 59 (15) 59 (14) 58 (16) 0.803

Female [n (%)] 101 (36) 70 (40) 31 (30) 0.077

Pre-existing comorbidities [n (%)]

 Diabetes 68 (24) 42 (24) 26 (25) 0.886

 Known coronary artery disease 75 (27) 49 (28) 26 (25) 0.554

 Hypertension 183 (65) 120 (69) 63 (60) 0.144

 Malignancy 20 (7) 14 (8) 6 (6) 0.472

 Renal insufficiency 43 (15) 26 (15) 17 (16) 0.764

 Pulmonary disease 65 (23) 39 (22) 26 (25) 0.635

 Cerebral vascular disease 24 (9) 17 (10) 7 (7) 0.378

 Congestive heart failure 69 (25) 42 (24) 27 (26) 0.747

Charlson comorbidity score36 [median (IQR)] 1 (0–3) 1 (0–3) 1 (0–3) 0.906

Arrest location [n (%)]

 Out-of-hospital 216 (77) 138 (79) 78 (74)

 In-hospital 64 (23) 37 (21) 27 (26) 0.378

Initial arrest rhythm [n (%)]

 PEA/asystole 154 (55) 92 (53) 62 (59)

 VF/VT 103 (37) 66 (37) 37 (35) 0.389

 Unknown 23 (8) 17 (10) 6 (6)

CPR duration [median (IQR)] 15 (8–23) 15 (7–25) 15 (8–21) 0.355

CPR duration > 20 min [n (%)] 80 (29) 54 (31) 26 (25) 0.277

*
Partial pressure of arterial oxygen > 300 mmHg during the first six hours after return of spontaneous circulation; CPR, cardiopulmonary 

resuscitation; IQR, interquartile range; PEA, pulseless electrical activity; SD, standard deviation; VF, ventricular fibrillation; VT ventricular 
tachycardia
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Table 2

Post-cardiac arrest data for all subjects. All values are median interquartile range unless otherwise noted.

Variables All Subjects
n = 280

No Hyperoxia
n = 175

Hyperoxia*
n = 105

p - value

Ventilator parameters

 TWA-FiO2 0.82 (0.66–0.97) 0.87 (0.64–0.99) 0.78 (0.68–0.92) 0.162

 PEEP (cmH2O) 5 (5–7) 5 (5–8) 5 (5–5) <0.001

 Tidal volume (cc/kg PBW) 7.4 (6.7–8.1) 7.4 (6.8–8.1) 7.3 (6.7–8.0) 0.537

 Respiratory rate (breaths/min) 17 (15–20) 17 (15–21) 16 (15–20) 0.282

 Plateau pressure (cmH2O) 20 (16–25) 21 (17–26) 20 (16–23) 0.241

 Plateau pressure > 30 cmH2O [n (%)] 42 (18) 33 (22) 9 (10) 0.016

PaO2 at 1 hr 201 (99–343) 121 (82–203) 406 (304–488) <0.001

PaO2 at 6 hr 106 (75–193) 99 (71–156) 128 (88–238) <0.001

TWA-SaO2 (%) 98 (97–99) 98 (96–99) 99 (98–100) <0.001

ROSC to first ABG (min) 59 (35–103) 63 (39–122) 48 (28–76) 0.002

Number of ABGs in first 6 hours 2 (2–3) 2 (2–3) 3 (2–3) 0.173

PaCO2 (mmHg) 44 (37–52) 45 (38–54) 43 (36–50) 0.077

pH 7.27 (7.18–7.34) 7.26 (7.18–7.34) 7.28 (7.20–7.35) 0.160

Base excess −8 (-11- -3) −8 (-12- -4) −6 (-10- -3) 0.256

Metabolic acidosis† [n (%)] 202 (72) 128 (73) 74 (70) 0.630

MAP (mmHg) 94 (82–105) 93 (81–103) 95 (84–106) 0.209

Arterial hypotension‡ [n (%)] 142 (51) 95 (54) 47 (45) 0.123

Vasopressor infusion [n (%)] 150 (54) 99 (57) 51 (49) 0.194

PCI [n (%)] 31 (11) 20 (11) 11 (10) 0.806

Modified SOFA score 5 (2–7) 5 (3–7) 4 (2–7) 0.119

*
Partial pressure of arterial oxygen > 300 mmHg during the first six hours after return of spontaneous circulation.

†
Defined as a base deficit ≤ −6 during the first 6 hours after return of spontaneous circulation.

‡
Defined as mean arterial pressure < 70 mmHg during the first 6 hours after return of spontaneous circulation. ABG, arterial blood gas; FiO2, 

fraction of inspired oxygen; MAP, mean arterial blood pressure; PaCO2, partial pressure of arterial carbon dioxide; PBW, predicted body weight; 

PCI, percutaneous coronary intervention; PEEP, positive end expiratory pressure, ROSC, return of spontaneous circulation; SaO2, arterial oxygen 

saturation; SOFA, sequential organ failure assessment; TWA, time weighted average.
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Table 3

Adjusted relative risks for hyperoxia (partial pressure of arterial oxygen > 300 mmHg) for the primary and 

secondary outcomes

Outcome Relative Risk 95% CI p-value

Primary Outcome:

 Poor Neurological Outcome*

  Listwise deletion 1.23 1.11 – 1.35 <0.001

  Multiple imputation 1.24 1.13 – 1.35 <0.001

Secondary Outcomes:

 In-hospital mortality

  Listwise deletion 1.24 0.99 – 1.55 0.060

  Multiple imputation 1.25 1.01 – 1.54 0.040

 Early neurological injury†

  Listwise deletion 1.32 1.03 – 1.69 0.026

  Multiple imputation 1.39 1.11 – 1.74 0.004

*
Defined as modified Rankin Scale (mRS) > 3 at hospital discharge;

†
Defined as a Full Outline of UnResponsiveness (FOUR) score ≤ 6 at 72 hours after return of spontaneous circulation. CI, confidence interval. 

Results of the full models are displayed in the supplemental material.
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