7,865 research outputs found

    Nonflammable potting, encapsulating and/or conformal coating compound

    Get PDF
    Compound formed from dimethylpolysiloxane, ammonium phosphate, and ground glass is nonflammable in air environment and self-extingushing in atmosphere of 60 percent oxygen and 40 percent nitrogen. Material may have applications for reducing industrial fire hazards and should interest aircraft industry, machinery manufacturers, and automotive industry

    Gas Requirements in Pressurized Transfer of Liquid Hydrogen

    Get PDF
    Of late, liquid hydrogen has become a very popular fuel for space missions. It is being used in such programs as Centaur and Saturn. Furthermore, hydrogen is the ideal working fluid for nuclear powered space vehicles currently under development. In these applications, liquid hydrogen fuel is generally transferred to the combustion chamber by a combination of pumping and pressurization. The pump forces the liquid propellant from the fuel tank to the combustion chamber; gaseous pressurant holds tank pressure sufficiently high to prevent cavitation at the pump inlet and to maintain the structural rigidity of the tank. The pressurizing system, composed of pressurant, tankage, and associated hardware can be a large portion of the total vehicle weight. Pressurant weight can be reduced by introducing the pressurizing gas at temperatures substantially greater than those of liquid hydrogen. Heat and mass transfer processes thereby induced complicate gas requirements during discharge. These requirements must be known to insure proper design of the pressurizing system. The aim of this paper is to develop from basic mass and energy transfer processes a general method to predict helium and hydrogen gas usage for the pressurized transfer of liquid hydrogen. This required an analytical and experimental investigation, the results of which are described in this paper

    Aerodynamic performance of a fully film cooled core turbine vane tested with cold air in a two-dimensional cascade

    Get PDF
    The aerodynamic performance of a fully film cooled core turbine vane was investigated experimentally in a two-dimensional cascade of 10 vanes. Three of the 10 vanes were cooled; the others were solid (uncooled) vanes. Cold air was used for both the primary and coolant flows. The cascade test covered a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95 and a range of coolant flow rates to 7.5 percent of the primary flow. The coolant flow was varied by changing the coolant supply pressure. The principal measurements were cross-channel surveys of exit total pressure, static pressure, and flow angle. The results presented include exit survey data and overall performance in terms of loss, flow angle, and weight flow for the range of exit velocity ratios and coolant flows investigated. The performance of the cooled vane is compared with the performance of an uncooled vane of the same profile and also with the performance obtained with a single cooled vane in the 10-vane cascade

    Incidence loss for a core turbine rotor blade in a two-dimensional cascade

    Get PDF
    The effect of incidence angle on the aerodynamic performance of an uncooled core turbine rotor blade was investigated experimentally in a two-dimensional cascade. The cascade test covered a range of incidence angles from minus 15 deg to 15 deg in 5-degree increments and a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95. The principal measurements were blade-surface static pressures and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the investigation include blade-surface velocity distribution and overall performance in terms of weight flow and loss for the range of incidence angles and exit velocity ratios investigated. The measured losses are also compared with two common methods of predicting incidence loss

    Cold-air performance evaluation of scale model oxidizer pump-drive turbine for the M-1 hydrogen-oxygen rocket engine. 3 - Performance of first stage with inlet-feedpipe-manifold assembly

    Get PDF
    Cold air performance test of scale model oxidizer pump drive turbine for M-1 engine - performance of first stage with inlet feedpipe manifold assembl

    Multiple Boundary Layer Instability Modes with Nonequilibrium and Wall Temperature Effects Using LASTRAC

    Get PDF
    Prediction and control of boundary layer transition from laminar to turbulent is important to many flow regimes and vehicle designs, including vehicles operating at hypersonic conditions where nonequilibrium effects may be encountered. Wall cooling is known to affect the instability characteristics of the boundary layer and subsequently the transition location. Design considerations, including material failure and fuel chemistry, require the use of actively cooled walls in hypersonic vehicles, further motivating the study of wall temperature effects on top of the considerations of reducing heat flux, drag, and uncertainty. In this work, we analyze the stability of a boundary layer with chemical and thermal nonequilibrium on a Mach 20, 6 wedge. We investigate the effects of wall temperature on multiple unstable modes individually and on the integrated growth of disturbances along the surface. We use the LAngley Stability and TRansition Analysis Code (LASTRAC) to evaluate boundary layer stability, using capabilities implemented by the authors. Included are results that address chemical nonequilibrium with both thermal equilibrium and nonequilibrium

    Boundary Layer Stability and Laminar-Turbulent Transition Analysis with Thermochemical Nonequilibrium Applied to Martian Atmospheric Entry

    Get PDF
    As Martian atmospheric entry vehicles increase in size to accommodate larger payloads, transitional ow may need to be taken into account in the design of the heat shield in order to reduce heat shield mass. The mass of the Thermal Protection System (TPS) comprises a significant portion of the vehicle mass, and a reduction of this mass would result in fuel savings. The current techniques used to design entry shields generally assume fully turbulent flow when the vehicle is large enough to expect transitional flow, and while this worst-case scenario provides a greater factor of safety it may also result in overdesigned TPS and unnecessarily high vehicle mass. Greater accuracy in the prediction of transition would also reduce uncertainty in the thermal and aerodynamic loads. Stability analysis, using e(sup N) -based methods including Linear Stability Theory (LST) and the Parabolized Stability Equations (PSE), offers a physics-based method of transition prediction that has been thoroughly studied and applied in perfect gas flows, and to a more limited extent in reacting and nonequilibrium flows. These methods predict the amplification of a known disturbance frequency and allow identification of the most unstable frequency. Transition is predicted to occur at a critical amplification or N Factor, frequently determined through experiment and empirical correlations. The LAngley Stability and TRansition Analysis Code (LASTRAC), with modifications for thermochemically reacting flows and arbitrary gas mixtures, will be presented with LST results on a simulation of a high enthalpy CO2 gas wind tunnel test relevant to Martian atmospheric entry. The results indicate transition caused by modified Tollmien-Schlichting waves on the leeward side, which are predicted to be more stable and cause transition slightly downstream when thermochemical nonequilibrium is included in the stability analysis for the same mean flow solution

    Percentage Leases: May Lessee Vacate Premises

    Get PDF
    A percentage lease is one which states a minimum rental, and, above that, an additional rental based upon a stated percentage of gross sales. The litigation posing the most difficulty in the area of percentage leases involves the right of the lessee to vacate the premises

    Three installations: a thesis chronicle

    Get PDF
    Not listed

    Effect of cooling-hole geometry on aerodynamic performance of a film-cooled turbine vane tested with cold air in a two-dimensional cascade

    Get PDF
    The effect of the orientation and cooling-hole size on turbine-vane aerodynamic losses was evaluated. The contribution of individual vane regions to the overall effect was also investigated. Test configurations were based upon a representative configuration having 45 spanwise rows of holes spaced about the entire vane profile. Nominal hole diameters of 0.0254 and 0.0356 cm and nominal hole orientations of 35 deg, 45 deg, and 55 deg from the local vane surface and 0 deg, 45 deg, and 90 deg from the main-stream flow direction were investigated. Flow conditions and aerodynamic losses were determined by vane-exit surveys of total pressure, static pressure, and flow angle
    • …
    corecore