247 research outputs found

    The Origin of the Rule against Unjust Discrimination

    Get PDF

    The Origin of the Rule against Unjust Discrimination

    Get PDF

    The Scope of the Rule against Unjust Discrimination by Public Servants

    Get PDF

    A Study of Transparent Plastics for use on Aircraft. Supplement

    Get PDF
    This supplement to a NACA study issued in May 1937 entitled "A Study of Transparent Plastics for Use on Aircraft", contains two tables. These tables contain data on bursting strengths of plastics, particularly at low temperatures. Table 1 contains the values reported in a table of the original memorandum, and additional values obtained at approximately 25 C, for three samples of Acrylate resin. The second table contains data obtained for the bursting strength when one surface of the plastic was cooled to approximately -35 C

    Resistance of Transparent Plastics to Impact

    Get PDF
    The problem of developing a windshield for aircraft which will withstand the effect of bird impacts during flight is a difficult one, as an estimate of the striking energy will indicate. If the average speed of the airplane is considered to be about 200 miles per hour and that of the bird about 70 miles per hour, the speed of the bird relative to the airplane may be as great as 400 feet per second. If a 4-pound bird is involved, a maximum impact energy of approximately 10,000 foot-pounds must be dissipated. To obtain this energy in a drop test in the Washington Monument, it would be necessary to drop a 20-pound weight down the 500-foot shaft. For both theoretical and practical reasons, it is necessary to keep the mass and speed more nearly like those to be encountered. However, to get an impact of about 10,000 foot-pounds with a 4-pound falling body, it would be necessary to drop it from a height of approximately one-half mile, neglecting air resistance. These facts will indicate some of the experimental obstacles in the way of simulating bird impacts against aircraft windshields

    Village Water Ozonation System

    Get PDF
    The Village Water Ozonation System (VWOS) team’s core mission is to provide economically sustainable and culturally sensitive drinking water solutions for communities, to empower them with the ability to properly maintain their drinking water supply, and to transform people’s lives by decreasing the occurrences of waterborne diseases. Currently, the VWOS team is partnering with Friends in Action to implement two drinking water treatment systems this summer for the community living on Rama Cay, an island in Nicaragua. The wells on the island have a high salt content and are contaminated with bacteria which makes the water unsafe to drink; therefore, these two systems consist of a Reverse Osmosis unit, a UV light and other filters to ensure clean water. VWOS is also partnering with Forward Edge International to serve Mama Beth\u27s Children\u27s Home in Kijabe, Kenya. Mama Beth\u27s serves approximately 250 children every day but their water source is heavily contaminated with bacteria. VWOS is designing a chlorination system that will provide safe water for the students with plans to implement it in the summer of 2023. Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research.https://mosaic.messiah.edu/engr2022/1021/thumbnail.jp

    Partial pressure of arterial carbon dioxide after resuscitation from cardiac arrest and neurological outcome: A prospective multi-center protocol-directed cohort study

    Get PDF
    Aims Partial pressure of arterial carbon dioxide (PaCO2) is a regulator of cerebral blood flow after brain injury. We sought to test the association between PaCO2 after resuscitation from cardiac arrest and neurological outcome. Methods A prospective protocol-directed cohort study across six hospitals. Inclusion criteria: age ≥ 18, non-traumatic cardiac arrest, mechanically ventilated after return of spontaneous circulation (ROSC), and receipt of targeted temperature management. Per protocol, PaCO2 was measured by arterial blood gas analyses at one and six hours after ROSC. We determined the mean PaCO2 over this initial six hours after ROSC. The primary outcome was good neurological function at hospital discharge, defined a priori as a modified Rankin Scale ≤ 3. Multivariable Poisson regression analysis was used to test the association between PaCO2 and neurological outcome. Results Of the 280 patients included, the median (interquartile range) PaCO2 was 44 (37-52) mmHg and 30% had good neurological function. We found mean PaCO2 had a quadratic (inverted “U” shaped) association with good neurological outcome, with a mean PaCO2 of 68 mmHg having the highest predictive probability of good neurological outcome, and worse neurological outcome at higher and lower PaCO2. Presence of metabolic acidosis attenuated the association between PaCO2 and good neurological outcome, with a PaCO2 of 51 mmHg having the highest predictive probability of good neurological outcome among patients with metabolic acidosis. Conclusion PaCO2 has a “U” shaped association with neurological outcome, with mild to moderate hypercapnia having the highest probability of good neurological outcome

    Association Between Elevated Mean Arterial Blood Pressure and Neurologic Outcome After Resuscitation From Cardiac Arrest: Results From a Multicenter Prospective Cohort Study

    Get PDF
    Objective: Laboratory studies suggest elevated blood pressure after resuscitation from cardiac arrest may be protective; however, clinical data are limited. We sought to test the hypothesis that elevated post-resuscitation mean arterial blood pressure (MAP) is associated with neurological outcome. Design: Pre-planned analysis of a prospective cohort study. Setting: Six academic hospitals in the United States. Patients: Adult, non-traumatic cardiac arrest patients treated with targeted temperature management after return of spontaneous circulation (ROSC). Interventions: MAP was measured non-invasively after ROSC and every hour during the initial six hours after ROSC. Measures and Main Results: We calculated the mean MAP and a priori dichotomized subjects into two groups: mean MAP 70–90 and > 90 mmHg. The primary outcome was good neurological function, defined as a modified Rankin Scale (mRS) ≤ 3. The mRS was prospectively determined at hospital discharge. Of the 269 patients included, 159 (59%) had a mean MAP > 90 mmHg. Good neurological function at hospital discharge occurred in 30% of patients in the entire cohort, and was significantly higher in patients with a mean MAP > 90 mmHg (42%) as compared to MAP 70–90 mmHg (15%) [absolute risk difference 27% (95% CI 17%−37%)]. In a multivariable Poisson regression model adjusting for potential confounders, mean MAP > 90 mmHg was associated with good neurological function, adjusted relative risk 2.46 (95% CI 2.09–2.88). Over ascending ranges of mean MAP, there was a dose-response increase in probability of good neurological outcome, with mean MAP > 110 mmHg having the strongest association, adjusted relative risk 2.97 (95% CI 1.86 – 4.76). Conclusions: Elevated blood pressure during the initial six hours after resuscitation from cardiac arrest was independently associated with good neurological function at hospital discharge. Further investigation is warranted to determine if targeting an elevated MAP would improve neurologic outcome after cardiac arrest
    corecore