189 research outputs found

    The detection and tracking of mine-water pollution from abandoned mines using electrical tomography

    Get PDF
    Increasing emphasis is being placed on the environmental and societal impact of mining, particularly in the EU, where the environmental impacts of abandoned mine sites (spoil heaps and tailings) are now subject to the legally binding Water Framework and Mine Waste Directives. Traditional sampling to monitor the impact of mining on surface waters and groundwater is laborious, expensive and often unrepresentative. In particular, sparse and infrequent borehole sampling may fail to capture the dynamic behaviour associated with important events such as flash flooding, mine-water break-out, and subsurface acid mine drainage. Current monitoring practice is therefore failing to provide the information needed to assess the socio-economic and environmental impact of mining on vulnerable eco-systems, or to give adequate early warning to allow preventative maintenance or containment. BGS has developed a tomographic imaging system known as ALERT ( Automated time-Lapse Electrical Resistivity Tomography) which allows the near real-time measurement of geoelectric properties "on demand", thereby giving early warning of potential threats to vulnerable water systems. Permanent in-situ geoelectric measurements are used to provide surrogate indicators of hydrochemical and hydrogeological properties. The ALERT survey concept uses electrode arrays, permanently buried in shallow trenches at the surface but these arrays could equally be deployed in mine entries or shafts or underground workings. This sensor network is then interrogated from the office by wireless telemetry (e.g: GSM, low-power radio, internet, and satellite) to provide volumetric images of the subsurface at regular intervals. Once installed, no manual intervention is required; data is transmitted automatically according to a pre-programmed schedule and for specific survey parameters, both of which may be varied remotely as conditions change (i.e: an adaptive sampling approach). The entire process from data capture to visualisation on the web-portal is seamless, with no manual intervention. Examples are given where ALERT has been installed and used to remotely monitor (i) seawater intrusion in a coastal aquifer (ii) domestic landfills and contaminated land and (iii) vulnerable earth embankments. The full potential of the ALERT concept for monitoring mine-waste has yet to be demonstrated. However we have used manual electrical tomography surveys to characterise mine-waste pollution at an abandoned metalliferous mine in the Central Wales orefield in the UK. Hydrogeochemical sampling confirms that electrical tomography can provide a reliable surrogate for the mapping and long-term monitoring of mine-water pollution

    The Linkage Between Upper Circumpolar Deep Water (UCDW) and Phytoplankton Assemblages on the West Antarctic Peninsula Continental Shelf

    Get PDF
    Intrusion of Upper Circumpolar Deep Water (UCDW), which was derived from the Antarctic Circumpolar Current (ACC), onto the western Antarctic Peninsula (WAP) shelf region in January 1993 provided a reservoir of nutrient-rich, warmer water below 150 m that subsequently upwelled into the upper water column. Four sites, at which topographically-induced upwelling of UCDW occurred, were identified in a 50 km by 400 km band along the outer WAP continental shelf. One additional site at which wind-driven upwelling occurred was also identified. Diatom-dominated phytoplankton assemblages were always associated with a topographically-induced upwelling site. Such phytoplankton communities were not detected at any other shelf location, although diatoms were present everywhere in the 80,000 km(2) study area and UCDW covered about one-third the area below 150 m. Phytoplankton communities dominated by taxa other than diatoms were restricted to transition waters between the UCDW and shelf waters, the southerly flowing waters out of the Gerlache Strait, and/or the summertime glacial ice melt surface waters very near shore. We suggest that in the absence of episodic intrusion and upwelling of UCDW, the growth requirements for elevated silicate/nitrate ratios and/or other upwelled constituents (e.g. trace metals) are not sufficiently met for diatoms to achieve high abundance or community dominance. One consequence of this is that the ice-free regions of the outer WAP continental shelf will not experience predictable spring diatom blooms. Rather, this region will experience episodic diatom blooms that occur at variable intervals and during different seasonal conditions, if the physical structuring events are occurring. Preferential drawdown of silicate relative to nitrate was observed at each of the offshore upwelling sites and resulted in a reduction in the ambient silicate:nitrate ratio relative to the corresponding value for unmodified UCDW (1.5 versus 3.0 for UCDW). The magnitude of the nutrient drawdown in areas of topographically-induced upwelling suggested that diatom growth had been elevated in response to recent upwelling but that the resulting increased algal biomass was either dispersed by advective processes and/or consumed by the larger krill that were observed to be associated with each offshore upwelling site. Thus, diatom bloom conditions on the outer WAP shelf may not be recognized based on elevated biomass and/or rates of carbon fixation. It was likely that similar physical forcing of significant phytoplankton growth, especially diatoms, may occur but be undetected in regions where the southern boundary of the ACC nears the Antarctic continental shelf edge. Our analyses from the west Antarctic Peninsula demonstrate coupling of the structure of the physical environment with nutrient distributions and phytoplankton assemblages and through to the higher trophic levels, such as Antarctic krill. This environment-trophic coupling may also occur in other regions of the Antarctic, as suggested by correspondences between the distribution of Southern ACC boundary and regions of high concentrations of Antarctic krill. The many mechanisms underlying this coupling remain to be determined, but it was clear that the ecology and biology of the components of the marine food web of the Antarctic continental shelf cannot be studied in isolation from one another or in isolation from the physical environment

    Arsenic and selenium

    Get PDF
    Arsenic (As) and selenium (Se) have become increasingly important in environmental geochemistry because of their significance to human health. Their concentrations vary markedly in the environment, partly in relation to geology and partly as a result of human activity. Some of the contamination evident today probably dates back to the first settled civilizations that used metals. This chapter outlines the main effects of arsenic and selenium on human and animal health, their abundance and distribution in the environment, sampling and analysis, and the main factors controlling their speciation and cycling. Such information should help to identify aquifers, water resources, and soils at risk from high concentrations of arsenic and selenium, and areas of selenium deficiency. Human activity has had, and is likely to continue to have, a major role in releasing arsenic and selenium from the geosphere and in perturbing the natural distribution of these and other elements over the Earth’s surface

    The Development of a Novel Questionnaire Approach to the Investigation of Horse Training, Management, and Behaviour.

    Get PDF
    The Equine Behaviour Assessment and Research Questionnaire (E-BARQ) is a questionnaire instrument developed to obtain quantitative data on the domestic equine triad of training, management, and behaviour of horses. The E-BARQ was developed to identify how changes in training and management impact behaviour over time, to define normal behaviour in horses, and to discover how to improve rider safety and horse welfare, leading to ethical equitation. During the development of the E-BARQ, we also investigated how best to motivate stakeholders to engage with this citizen science project. The pilot version of the E-BARQ collected qualitative data on respondents' experience of the questionnaire. The pilot questionnaire was developed with the assistance of an international panel (with professional expertise in horse training, equitation science, veterinary science, equestrian coaching, welfare, animal behaviour, and elite-level riding), and was used to collect data on 1320 horses from approximately 1194 owner/caregiver respondents, with an option for respondents to provide free-text feedback. A Rotated Principal Component Analysis of the 218 behavioural, management, and training questionnaire items extracted a total of 65 rotated components. Thirty-six of the 65 rotated components demonstrated high internal reliability. Of the 218 questionnaire items, 43 items failed to reach the Rotated Principal Component Analysis criteria and were not included in the final version of the E-BARQ. Survey items that failed the Rotated Principal Component Analysis inclusion criteria were discarded if found to have a less than 85% response rate, or a variance of less than 1.3. Of those that survived the Rotated Principal Component Analysis, items were further assigned to horse temperament (17 rotated components), equitation (11 rotated components), and management and equipment (8 rotated components) groups. The feedback from respondents indicated the need for further items to be added to the questionnaire, resulting in a total of 214 items for the final E-BARQ survey. Many of these items were further grouped into question matrices, and the demographic items for horse and handler included, giving a final total of 97 questions on the E-BARQ questionnaire. These results provided content validity, showing that the questionnaire items were an acceptable representation of the entire horse training, management, and behavioural domain for the development of the final E-BARQ questionnaire

    Modeling the Dispersal of Eastern Oyster (Crassostrea virginica) larvae in Delaware Bay

    Get PDF
    The interactions of circulation and growth processes in determining the horizontal distribution of eastern oyster (Crassostrea virginica) larvae in the Delaware Bay estuary were investigated with a coupled circulation-individual-based larvae model that used environmental conditions from the spawning seasons (mid-June to mid-September) of 1984, 1985, 1986, 2000, and 2001. Particles, representing oyster larvae, were released at five-day intervals from areas in Delaware Bay that correspond to natural oyster reefs. The simulated larval development time was used to estimate potential larval success, determined by the percent of larvae that successfully reached settlement size (330 µm) within the planktonic larval duration of 30 days. Success rates for simulated larvae released in the upper estuary were less than half of those released in the lower estuary because of the reduction in growth rate from exposure to low salinity. Simulated larval success rates were further reduced during periods of increased river discharge, which produced low salinity conditions. The simulated transport patterns showed a down-estuary drift of oyster larvae during the spawning season, which is consistent with the observed reduction in settlement and recruitment rates in the upper estuary. The simulated transport pathways patterns showed that larvae originating in the middle and lower regions of the estuary had low rates of dispersion and high rates of self-settlement. Larvae released in the upper reaches of the estuary had limited contributions to the Delaware Bay oyster population, in part because of the lower overall simulated larval success in the low salinity regions. The simulated transport patterns suggested that the upper bay exports rather than receives larvae, which has implications for the establishment of genetic traits

    The Palmer LTER: A Long-Term Ecological Research Program at Palmer Station, Antarctica

    Get PDF
    THE ANTARCTIC marine ecosystem-the assemblage of plants, animals, ocean, sea ice, and island components south of the Antarctic Convergence is among the largest readily defined ecosystems on Earth (36 X 106 km2 ) (Hedgpeth, 1977; Petit et al., 1991). This ecosystem is composed of an interconnected system of functionally distinct hydrographic and biogeochemical subdivisions (Treguer and Jacques, 1992) and includes open ocean, frontal regions, shelf-slope waters, sea ice, and marginal ice zones. Oceanic, atmospheric, and biogeochemical processes within this system are thought to be globally significant, have been infrequently studied, and are poorly understood relative to more accessible marine ecosystems (Harris and Stonehouse, 1991; Johannessen et al., 1994). The Palmer Long-Term Ecological Research (Palmer LTER) area west of the Antarctic Peninsula (Fig. la) is a complex combination of a coastal/continental shelf zone and a seasonal sea ice zone, because this area is swept by the yearly advance and retreat of sea ice. The Palmer LTER program is a multidisciplinary program established to study this polar marine ecosystem

    Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    Get PDF
    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species
    • …
    corecore