21 research outputs found

    Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seagliderâ„¢

    Get PDF
    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species

    Long-range underwater vocalizations of the crabeater seal (Lobodon carcinophaga)

    Get PDF
    The article of record as published may be found at https://dx.doi.org/10.1121/1.3442362This study provides a comprehensive description of the acoustic characteristics of the predominant long-range underwater vocalizations of the crabeater seal, Lobodon carcinophaga, derived from stationary and continuous long-term recordings obtained in the Southern Ocean in 2007. Visual screening of data recorded between 1 October and 15 December 2007 indicates that the principal period of vocal activity of the crabeater seal is the latter part of October and all of November, coinciding with the breeding season of this species. Two call types were identified during this period: the low moan call, which has been described in previous studies and the high moan call, a call type newly described here. Out of 17 052 manually extracted crabeater seal calls, high-quality recordings of 152 low moans and 86 high moans with a signal-to-noise ratio exceeding 15 dB were selected and call-specific acoustic features were determined. While the mean duration of the two call types was comparable (~2.5 s), the high moan occurred at notably higher frequencies (1000–4900 Hz) than the low moan (260–2500 Hz). This study provides baseline information necessary to develop automated detection algorithms to facilitate systematic screening of extended data sets for crabeater seal vocalizations.Funded by Naval Postgraduate School.Partial funding came from Award No. N00244-07-1-0005 from the U.S. Naval Postgraduate School. This is NOAA/PMEL contribution No. 3283

    Sounds from airguns and fin whales recorded in the mid-Atlantic Ocean, 1999-2009

    No full text
    International audienceBetween 1999 and 2009, autonomous hydrophones were deployed to monitor seismic activity from 16° N to 50° N along the Mid-Atlantic Ridge. These data were examined for airgun sounds produced during offshore surveys for oil and gas deposits, as well as the 20 Hz pulse sounds from fin whales, which may be masked by airgun noise. An automatic detection algorithm was used to identify airgun sound patterns, and fin whale calling levels were summarized via long-term spectral analysis. Both airgun and fin whale sounds were recorded at all sites. Fin whale calling rates were higher at sites north of 32° N, increased during the late summer and fall months at all sites, and peaked during the winter months, a time when airgun noise was often prevalent. Seismic survey vessels were acoustically located off the coasts of three major areas: Newfoundland, northeast Brazil, and Senegal and Mauritania in West Africa. In some cases, airgun sounds were recorded almost 4000 km from the survey vessel in areas that are likely occupied by fin whales, and at some locations airgun sounds were recorded more than 80% days/month for more than 12 consecutive months
    corecore