2,124 research outputs found

    Multiexcitons confined within a sub-excitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals

    Full text link
    The use of ultrafast gating techniques allows us to resolve both spectrally and temporally the emission from short-lived neutral and negatively charged biexcitons in ultrasmall (sub-10 nm) CdSe nanocrystals (nanocrystal quantum dots). Because of forced overlap of electronic wave functions and reduced dielectric screening, these states are characterized by giant interaction energies of tens (neutral biexcitons) to hundreds (charged biexcitons) of meV. Both types of biexcitons show extremely short lifetimes (from sub-100 picoseconds to sub-picosecond time scales) that rapidly shorten with decreasing nanocrystal size. These ultrafast relaxation dynamics are explained in terms of highly efficient nonradiative Auger recombination.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007

    Hard thermal loops with a background plasma velocity

    Get PDF
    I consider the calculation of the two and three-point functions for QED at finite temperature in the presence of a background plasma velocity. The final expressions are consistent with Lorentz invariance, gauge invariance and current conservation, pointing to a straightforward generalization of the hard thermal loop formalism to this physical situation. I also give the resulting expression for the effective action and identify the various terms.Comment: 11 pages, no figure

    Structure Functions and Pair Correlations of the Quark-Gluon Plasma

    Full text link
    Recent experiments at RHIC and theoretical considerations indicate that the quark-gluon plasma, present in the fireball of relativistic heavy-ion collisions, might be in a liquid phase. The liquid state can be identified by characteristic correlation and structure functions. Here definitions of the structure functions and pair correlations of the quark-gluon plasma are presented as well as perturbative results. These definitions might be useful for verifying the quark-gluon-plasma liquid in QCD lattice calculations.Comment: 9 pages, 1 figure, revised version (new remark on the coupling parameter on page 2), to be published in Phys. Rev.

    Revealing the Exciton Fine Structure in PbSe Nanocrystal Quantum Dots

    Full text link
    We measure the photoluminescence (PL) lifetime, τ\tau, of excitons in colloidal PbSe nanocrystals (NCs) at low temperatures to 270~mK and in high magnetic fields to 15~T. For all NCs (1.3-2.3~nm radii), τ\tau increases sharply below 10~K but saturates by 500~mK. In contrast to the usual picture of well-separated ``bright" and ``dark" exciton states (found, e.g., in CdSe NCs), these dynamics fit remarkably well to a system having two exciton states with comparable - but small - oscillator strengths that are separated by only 300-900 μ\mueV. Importantly, magnetic fields reduce τ\tau below 10~K, consistent with field-induced mixing between the two states. Magnetic circular dichroism studies reveal exciton g-factors from 2-5, and magneto-PL shows >>10\% circularly polarized emission.Comment: To appear in Physical Review Letter

    Maximal Entanglement, Collective Coordinates and Tracking the King

    Full text link
    Maximal entangled states (MES) provide a basis to two d-dimensional particles Hilbert space, d=prime ≠2\ne 2. The MES forming this basis are product states in the collective, center of mass and relative, coordinates. These states are associated (underpinned) with lines of finite geometry whose constituent points are associated with product states carrying Mutual Unbiased Bases (MUB) labels. This representation is shown to be convenient for the study of the Mean King Problem and a variant thereof, termed Tracking the King which proves to be a novel quantum communication channel. The main topics, notions used are reviewed in an attempt to have the paper self contained.Comment: 8. arXiv admin note: substantial text overlap with arXiv:1206.3884, arXiv:1206.035
    • …
    corecore