2,303 research outputs found

    Taking into account the vertical drift of molecular ions when determining the kinetic parameters of ionization-recombination processes in the F2-layer maximum

    Get PDF
    Height distribution analysis for kinetic molecular ionization-recombination processes in F 2 region during solar activitie

    The solitons redistribution in Bose-Einstein condensate in quasiperiodic optical lattice

    Full text link
    We numerically study the dynamical excitations in Bose-Einstein condensate (BEC) placed in periodic and quasi-periodic 2D optical lattice (OL). In case of the repulsive mean-field interaction the BEC quantum tunnelling leads to a progressive soliton's splitting and generating of secondary solitons, which migrate to closest trapping potential minima. A nontrivial soliton dynamics appears when a series of pi-pulses (phase kicks) are applied to the optical lattice. Such sudden perturbation produces a dynamic redistribution of the secondary solitons, leading to a formation of an artificial solitonic superlattice. Different geometries of OL are analyzed.Comment: 16 pages, 6 figure

    Ultrasoft Quark Damping in Hot QCD

    Full text link
    We determine the quark damping rates in the context of next-to-leading order hard-thermal-loop summed perturbation of high-temperature QCD where weak coupling is assumed. The quarks are ultrasoft. Three types of divergent behavior are encountered: infrared, light-cone and at specific points determined by the gluon energies. The infrared divergence persists and is logarithmic whereas the two others are circumvented.Comment: 16 page

    Photon and electron spectra in hot and dense QED

    Get PDF
    Photon and electron spectra in hot and dense QED are found in the high temperature limit for all |\q| using the Feynman gauge and the one-loop self-energy. All spectra are split by the medium and their branches develop the gap (the dynamical mass) at zero momentum. The photon spectrum has two branches (longitudinal and transverse) with the common mass; but electron spectrum is split on four branches which are well-separated for any |\q| including their |\q|=0 limits (their effective masses). These masses and the photon thermal mass are calculated explicitly and the different limits of spectrum branches are established in detail. The gauge invariance of the high-temperature spectra is briefly discussed.Comment: 9 pages, latex, no figure
    corecore