2,370 research outputs found

    Multiexcitons confined within a sub-excitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals

    Full text link
    The use of ultrafast gating techniques allows us to resolve both spectrally and temporally the emission from short-lived neutral and negatively charged biexcitons in ultrasmall (sub-10 nm) CdSe nanocrystals (nanocrystal quantum dots). Because of forced overlap of electronic wave functions and reduced dielectric screening, these states are characterized by giant interaction energies of tens (neutral biexcitons) to hundreds (charged biexcitons) of meV. Both types of biexcitons show extremely short lifetimes (from sub-100 picoseconds to sub-picosecond time scales) that rapidly shorten with decreasing nanocrystal size. These ultrafast relaxation dynamics are explained in terms of highly efficient nonradiative Auger recombination.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Are there plasminos in superconductors?

    Full text link
    Hot and/or dense, normal-conducting systems of relativistic fermions exhibit a particular collective excitation, the so-called plasmino. We compute the one-loop self-energy, the dispersion relation and the spectral density for fermions interacting via attractive boson exchange. It is shown that plasminos also exist in superconductors.Comment: 15 pages, 14 figures, revte

    Nonlinear cross-Kerr quasiclassical dynamics

    Full text link
    We study the quasiclassical dynamics of the cross-Kerr effect. In this approximation, the typical periodical revivals of the decorrelation between the two polarization modes disappear and they remain entangled. By mapping the dynamics onto the Poincare space, we find simple conditions for polarization squeezing. When dissipation is taken into account, the shape of the states in such a space is not considerably modified, but their size is reduced.Comment: 16 pages, 5 figure

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007

    Angular performance measure for tighter uncertainty relations

    Full text link
    The uncertainty principle places a fundamental limit on the accuracy with which we can measure conjugate physical quantities. However, the fluctuations of these variables can be assessed in terms of different estimators. We propose a new angular performance that allows for tighter uncertainty relations for angle and angular momentum. The differences with previous bounds can be significant for particular states and indeed may be amenable to experimental measurement with the present technology.Comment: 4 pages, 1 figures. Comments welcom

    A Large Blue Shift of the Biexciton State in Tellurium Doped CdSe Colloidal Quantum Dots

    Full text link
    The exciton-exciton interaction energy of Tellurium doped CdSe colloidal quantum dots is experimentally investigated. The dots exhibit a strong Coulomb repulsion between the two excitons, which results in a huge measured biexciton blue shift of up to 300 meV. Such a strong Coulomb repulsion implies a very narrow hole wave function localized around the defect, which is manifested by a large Stokes shift. Moreover, we show that the biexciton blue shift increases linearly with the Stokes shift. This result is highly relevant for the use of colloidal QDs as optical gain media, where a large biexciton blue shift is required to obtain gain in the single exciton regime.Comment: 9 pages, 4 figure
    • …
    corecore