311 research outputs found

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    Two-dimensional simulations of laser-plasma interaction and hot electron generation in the context of shock-ignition research

    Get PDF
    Laser-plasma interaction and hot electron generation play a crucial role in the context of inertial confinement fusion and in particular in the shock-ignition concept. Here we present a fully kinetic large-scale two-dimensional simulation studying laser-plasma interaction and hot electron generation in a relatively long and hot coronal plasma. The simulation shows saturation of the reflectivity of an intense spike pulse and absorption taking place close to a quarter critical density in particular, due to cavitation and stimulated Raman scattering. The signatures of steady two-plasmon decay are observed, but the hot electron number produced by this instability is low in comparison with the other two processes. The spectral and angular distribution of the back-scattered light is presented and the energy and angular characteristics of hot electrons due to individual absorption processes are studied

    Design of plasma shutters for improved heavy ion acceleration by ultra-intense laser pulses

    Full text link
    In this work, we investigate the application of the plasma shutters for heavy ion acceleration driven by a high-intensity laser pulse. We use particle-in-cell (PIC) and hydrodynamic simulations. The laser pulse, transmitted through the opaque shutter, gains a steep-rising front and its peak intensity is locally increased at the cost of losing part of its energy. These effects have a direct influence on subsequent ion acceleration from the ultrathin target behind the shutter. In our 3D simulations of silicon nitride plasma shutter and a silver target, the maximal energy of high-Z ions increases significantly when the shutter is included for both linearly and circularly polarized laser pulses. Moreover, application of the plasma shutter for linearly polarized pulse results in focusing of ions towards the laser axis in the plane perpendicular to the laser polarization. The generated high energy ion beam has significantly lower divergence compared to the broad ion cloud, generated without the shutter. The effects of prepulses are also investigated assuming a double plasma shutter. The first shutter can withstand the assumed sub-ns prepulse (treatment of ns and ps prepulses by other techniques is assumed) and the pulse shaping occursvia interaction with the second shutter. On the basis of our theoretical findings, we formulated an approach towards designing a double plasma shutter for high-intensity and high-power laser pulses and built a prototype.Comment: 30 pages 13 figure

    Evidence of resonant surface wave excitation in the relativistic regime through measurements of proton acceleration from grating targets

    Get PDF
    The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, has been experimentally investigated. Ultrahigh contrast (1012\sim 10^{12}) pulses allowed to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultra-high intensity >10^{19} \mbox{W/cm}^{2}. A maximum increase by a factor of 2.5 of the cut-off energy of protons produced by Target Normal Sheath Acceleration has been observed with respect to plane targets, around the incidence angle expected for resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.Comment: 5 pages, 5 figures, 2nd version implements final correction

    Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma

    Get PDF
    Laser–plasma interaction (LPI) at intensities 1015–1016 W cm2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity 1:2 1016 W cm2 with a 100 mm scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (4 keV) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance

    Expanding RIB Capabilities at the Cyclotron Institute: \textsuperscript{3}He-LIG production with an Isobar Separator LSTAR

    Full text link
    A new \textsuperscript{3}He-driven IGISOL production station and mass separator have been designed to produce neutron-deficient low-mass isotopes at the Cyclotron Institute for the TAMUTRAP facility. The LSTAR design has a mass resolution M/ΔM3,000M/\Delta M\geq 3, 000 to reject contaminants with >95%\gt95\% efficiency.Comment: Proceeding for EMIS 202
    corecore