259 research outputs found

    Pressure dependence of phase transitions in the quasi one-dimensional metal-insulator transition system beta-Na1/3V2O5

    Full text link
    The pressure dependence of phase transitions in the quasi one-dimensional vanadium oxide β\beta-Na1/3_{1/3}V2_2O5_5 has been studied by magnetic susceptibility and electrical resistivity measurements. The pressure dependence of the various transition temperatures is quite differently. The transition at T=240 K, previously reported and attributed to ordering on Na sites, and a second transition at T≈222T \approx 222 K, reported here for the first time and attributed to a further increase of order on Na sites, are almost independent of pressure. On the other hand, the metal-insulator (MI) transition at TMI=130T_{MI}=130 K shifts to lower temperatures, while the magnetic transition at TN=24T_N=24 K shifts to higher temperatures with increasing pressure. We discuss the different pressure dependencies of TMIT_{MI} and TNT_N in terms of increasing interchain coupling and the MI transition to be of Peierls type.Comment: 5 pages, 5 figure

    Growth of Oxide Compounds under Dynamic Atmosphere Composition

    Full text link
    Commercially available gases contain residual impurities leading to a background oxygen partial pressure of typically several 10^{-6} bar, independent of temperature. This oxygen partial pressure is inappropriate for the growth of some single crystals where the desired oxidation state possesses a narrow stability field. Equilibrium thermodynamic calculations allow the determination of dynamic atmosphere compositions yielding such self adjusting and temperature dependent oxygen partial pressures, that crystals like ZnO, Ga2O3, or Fe{1-x}O can be grown from the melt.Comment: 4 pages, 3 figures, talk on CGCT-4 Sendai, May 21-24, 200

    On the Crystallization of Terbium Aluminium Garnet

    Full text link
    Attempts to grow terbium aluminium garnet (Tb3Al5O12, TAG) by the Czochralski method lead to crystals of millimeter scale. Larger crystals could not be obtained. DTA measurements within the binary system showed that TAG melts incongruently at 1840 deg. C. The perovskite (TbAlO3, TAP) with a congruent melting point of 1930 deg. C is the most stable phase in this system. The region for primary crystallization of TAP covers the chemical composition of TAG and suppresses the primary crystallization of the terbium aluminium garnet.Comment: 6 pages, 2 figure

    New magnetic phase in metallic V_{2-y}O_3 close to the metal insulator transition

    Full text link
    We have observed two spin density wave (SDW) phases in hole doped metallic V_{2-y}O_3, one evolves from the other as a function of doping, pressure or temperature. They differ in their response to an external magnetic field, which can also induce a transition between them. The phase boundary between these two states in the temperature-, doping-, and pressure-dependent phase diagram has been determined by magnetization and magnetotransport measurements. One phase exists at high doping level and has already been described in the literature. The second phase is found in a small parameter range close to the boundary to the antiferromagnetic insulating phase (AFI). The quantum phase transitions between these states as a function of pressure and doping and the respective metamagnetic behavior observed in these phases are discussed in the light of structurally induced changes of the band structure.Comment: REVTeX, 8 pages, 12 EPS figures, submitted to PR

    Resolving structural variability in network models and the brain

    Get PDF
    Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar diagnostics presented in statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling---in addition to several summary statistics, including the mean clustering coefficient, shortest path length, and network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be embedded in anatomical brain regions tend to produce distributions that are similar to those extracted from the brain. We also find that network models hardcoded to display one network property do not in general also display a second, suggesting that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data.Comment: 24 pages, 11 figures, 1 table, supplementary material

    Importance of the V 3d-O 2p hybridization in the Mott-Hubbard material V2O3

    Full text link
    We studied the changes in the electronic structure of V2O3 using a cluster model. The calculations included fluctuations from the coherent band in the metallic phase, and non-local Mott-Hubbard fluctuations in the insulating phase. The incoherent structure is mostly related to the usual ligand screening channel (3d2L). The coherent peak in the metallic phase corresponds to coherent band fluctuations (3d2C). The non-local screened state in the insulating phase (3d2D) appears at higher energies, opening the band gap. The photon energy dependence of the spectra is mostly due to the relative V 3d and O 2p cross sections. The present model reproduces also the observed changes in the V 1s core-level spectra. The above results suggest that the Mott-Hubbard transition in V2O3 requires a multi-band model.Comment: 4 pages, 4 figure

    Transport, magnetic, thermodynamic and optical properties in Ti-doped Sr_2RuO_4

    Get PDF
    We report on electrical resistivity, magnetic susceptibility and magnetization, on heat capacity and optical experiments in single crystals of Sr_2Ru_(1-x)Ti_xO_4. Samples with x=0.1 and 0.2 reveal purely semiconducting resistivity behavior along c and the charge transport is close to localization within the ab-plane. A strong anisotropy in the magnetic susceptibility appears at temperatures below 100 K. Moreover magnetic ordering in c-direction with a moment of order 0.01 mu_B/f.u. occurs at low temperatures. On doping the low-temperature linear term of the heat capacity becomes reduced significantly and probably is dominated by spin fluctuations. Finally, the optical conductivity reveals the anisotropic character of the dc resistance, with the in-plane conductance roughly following a Drude-type behavior and an insulating response along c
    • …
    corecore