3,552 research outputs found

    Stationarity-conservation laws for certain linear fractional differential equations

    Full text link
    The Leibniz rule for fractional Riemann-Liouville derivative is studied in algebra of functions defined by Laplace convolution. This algebra and the derived Leibniz rule are used in construction of explicit form of stationary-conserved currents for linear fractional differential equations. The examples of the fractional diffusion in 1+1 and the fractional diffusion in d+1 dimensions are discussed in detail. The results are generalized to the mixed fractional-differential and mixed sequential fractional-differential systems for which the stationarity-conservation laws are obtained. The derived currents are used in construction of stationary nonlocal charges.Comment: 28 page

    Principles of Discrete Time Mechanics: II. Classical field Theory

    Get PDF
    We apply the principles discussed in an earlier paper to the construction of discrete time field theories. We derive the discrete time field equations of motion and Noether's theorem and apply them to the Schrodinger equation to illustrate the methodology. Stationary solutions to the discrete time Schrodinger wave equation are found to be identical to standard energy eigenvalue solutions except for a fundamental limit on the energy. Then we apply the formalism to the free neutral Klein Gordon system, deriving the equations of motion and conserved quantities such as the linear momentum and angular momentum. We show that there is an upper bound on the magnitude of linear momentum for physical particle-like solutions. We extend the formalism to the charged scalar field coupled to Maxwell's electrodynamics in a gauge invariant way. We apply the formalism to include the Maxwell and Dirac fields, setting the scene for second quantisation of discrete time mechanics and discrete time Quantum Electrodynamics.Comment: 23 pages, LateX, To be published in J.Phys.A: Math.Gen: contact email address: [email protected]

    Extensions and degenerations of spectral triples

    Full text link
    For a unital C*-algebra A, which is equipped with a spectral triple and an extension T of A by the compacts, we construct a family of spectral triples associated to T and depending on the two positive parameters (s,t). Using Rieffel's notation of quantum Gromov-Hausdorff distance between compact quantum metric spaces it is possible to define a metric on this family of spectral triples, and we show that the distance between a pair of spectral triples varies continuously with respect to the parameters. It turns out that a spectral triple associated to the unitarization of the algebra of compact operators is obtained under the limit - in this metric - for (s,1) -> (0, 1), while the basic spectral triple, associated to A, is obtained from this family under a sort of a dual limiting process for (1, t) -> (1, 0). We show that our constructions will provide families of spectral triples for the unitarized compacts and for the Podles sphere. In the case of the compacts we investigate to which extent our proposed spectral triple satisfies Connes' 7 axioms for noncommutative geometry.Comment: 40 pages. Addedd in ver. 2: Examples for the compacts and the Podle`s sphere plus comments on the relations to matricial quantum metrics. In ver.3 the word "deformations" in the original title has changed to "degenerations" and some illustrative remarks on this aspect are adde

    Lack of consensus in social systems

    Full text link
    We propose an exactly solvable model for the dynamics of voters in a two-party system. The opinion formation process is modeled on a random network of agents. The dynamical nature of interpersonal relations is also reflected in the model, as the connections in the network evolve with the dynamics of the voters. In the infinite time limit, an exact solution predicts the emergence of consensus, for arbitrary initial conditions. However, before consensus is reached, two different metastable states can persist for exponentially long times. One state reflects a perfect balancing of opinions, the other reflects a completely static situation. An estimate of the associated lifetimes suggests that lack of consensus is typical for large systems.Comment: 4 pages, 6 figures, submitted to Phys. Rev. Let

    Rak błony śluzowej macicy u kobiet poniżej 40 roku życia

    Get PDF

    Reverberation Mapping Measurements of Black Hole Masses in Six Local Seyfert Galaxies

    Get PDF
    We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity AGNs. We have reliably measured thetime delay between variations in the continuum and Hbeta emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) R-L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hbeta time delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.Comment: 52 pages (AASTeX: 29 pages of text, 8 tables, 7 figures), accepted for publication in the Astrophysical Journa

    Forecasting the Early Impact of COVID-19 on Physician Supply in EU Countries

    Get PDF
    Background Many countries faced health workforce challenges even before the pandemic, such as impending retirements, negative population growth, or sub-optimal allocation of resources across health sectors. Current quantitative models are often of limited use, either because they require extensive individual-level data to be properly calibrated, or (in the absence of such data) because they are too simplistic to capture important demographic changes or disruptive epidemiological shocks such as the SARS-CoV-2 pandemic. Method We propose a population-dynamic and stock-flow-consistent approach to physician supply forecasting that is complex enough to account for dynamically changing behaviour, while requiring only publicly available time-series data for full calibration. We demonstrate the utility of this model by applying it to 21 European countries to forecast the supply of generalist and specialist physicians to 2040, and the impact of increased health care utilisation due to Covid on this supply. Results Compared with the workforce needed to maintain physician density at 2019 levels, we find that in many countries there is indeed a significant trend towards decreasing generalist density at the expense of increasing specialist density. The trends for specialists are exacerbated by expectations of negative population growth in many Southern and Eastern European countries. Compared to the expected demographic changes in the population and the health workforce, we expect a limited impact of Covid on these trends, even under conservative modelling assumptions. Finally, we generalise the approach to a multiprofessional, multi-regional and multi-sectoral model for Austria, where we find an additional suboptimal distribution in the supply of contracted versus non-contracted (private) physicians. Conclusion It is therefore vital to develop tools for decision-makers to influence the allocation and supply of doctors across specialties and sectors to address these imbalances

    A Revised Broad-Line Region Radius and Black Hole Mass for the Narrow-Line Seyfert 1 NGC 4051

    Get PDF
    We present the first results from a high sampling rate, multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from telescopes around the world. The primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs. We feature results for NGC 4051 here because, until now, this object has been a significant outlier from AGN scaling relationships, e.g., it was previously a ~2-3sigma outlier on the relationship between the broad-line region (BLR) radius and the optical continuum luminosity - the R_BLR-L relationship. Our new measurements of the lag time between variations in the continuum and Hbeta emission line made from spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R_BLR = 1.87 (+0.54 -0.50) light days and black hole mass of M_BH = 1.73 (+0.55 -0.52) x 10^6 M_sun. This radius is consistent with that expected from the R_BLR-L relationship, based on the present luminosity of NGC 4051 and the most current calibration of the relation by Bentz et al. (2009a). We also present a preliminary look at velocity-resolved Hbeta light curves and time delay measurements, although we are unable to reconstruct an unambiguous velocity-resolved reverberation signal.Comment: 38 pages, 7 figures, accepted for publication in ApJ, changes from v1 reflect suggestions from anonymous refere

    Constant Curvature Coefficients and Exact Solutions in Fractional Gravity and Geometric Mechanics

    Full text link
    We study fractional configurations in gravity theories and Lagrange mechanics. The approach is based on Caputo fractional derivative which gives zero for actions on constants. We elaborate fractional geometric models of physical interactions and we formulate a method of nonholonomic deformations to other types of fractional derivatives. The main result of this paper consists in a proof that for corresponding classes of nonholonomic distributions a large class of physical theories are modelled as nonholonomic manifolds with constant matrix curvature. This allows us to encode the fractional dynamics of interactions and constraints into the geometry of curve flows and solitonic hierarchies.Comment: latex2e, 11pt, 27 pages, the variant accepted to CEJP; added and up-dated reference
    corecore