3,679 research outputs found

    Fractional variational calculus of variable order

    Full text link
    We study the fundamental problem of the calculus of variations with variable order fractional operators. Fractional integrals are considered in the sense of Riemann-Liouville while derivatives are of Caputo type.Comment: Submitted 26-Sept-2011; accepted 18-Oct-2011; withdrawn by the authors 21-Dec-2011; resubmitted 27-Dec-2011; revised 20-March-2012; accepted 13-April-2012; to 'Advances in Harmonic Analysis and Operator Theory', The Stefan Samko Anniversary Volume (Eds: A. Almeida, L. Castro, F.-O. Speck), Operator Theory: Advances and Applications, Birkh\"auser Verlag (http://www.springer.com/series/4850

    Fractional conservation laws in optimal control theory

    Full text link
    Using the recent formulation of Noether's theorem for the problems of the calculus of variations with fractional derivatives, the Lagrange multiplier technique, and the fractional Euler-Lagrange equations, we prove a Noether-like theorem to the more general context of the fractional optimal control. As a corollary, it follows that in the fractional case the autonomous Hamiltonian does not define anymore a conservation law. Instead, it is proved that the fractional conservation law adds to the Hamiltonian a new term which depends on the fractional-order of differentiation, the generalized momentum, and the fractional derivative of the state variable.Comment: The original publication is available at http://www.springerlink.com Nonlinear Dynamic

    Fractional Hamilton formalism within Caputo's derivative

    Full text link
    In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canonical Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange formulations lead to the same set of equations.Comment: 8 page

    Stationarity-conservation laws for certain linear fractional differential equations

    Full text link
    The Leibniz rule for fractional Riemann-Liouville derivative is studied in algebra of functions defined by Laplace convolution. This algebra and the derived Leibniz rule are used in construction of explicit form of stationary-conserved currents for linear fractional differential equations. The examples of the fractional diffusion in 1+1 and the fractional diffusion in d+1 dimensions are discussed in detail. The results are generalized to the mixed fractional-differential and mixed sequential fractional-differential systems for which the stationarity-conservation laws are obtained. The derived currents are used in construction of stationary nonlocal charges.Comment: 28 page

    Extensions and degenerations of spectral triples

    Full text link
    For a unital C*-algebra A, which is equipped with a spectral triple and an extension T of A by the compacts, we construct a family of spectral triples associated to T and depending on the two positive parameters (s,t). Using Rieffel's notation of quantum Gromov-Hausdorff distance between compact quantum metric spaces it is possible to define a metric on this family of spectral triples, and we show that the distance between a pair of spectral triples varies continuously with respect to the parameters. It turns out that a spectral triple associated to the unitarization of the algebra of compact operators is obtained under the limit - in this metric - for (s,1) -> (0, 1), while the basic spectral triple, associated to A, is obtained from this family under a sort of a dual limiting process for (1, t) -> (1, 0). We show that our constructions will provide families of spectral triples for the unitarized compacts and for the Podles sphere. In the case of the compacts we investigate to which extent our proposed spectral triple satisfies Connes' 7 axioms for noncommutative geometry.Comment: 40 pages. Addedd in ver. 2: Examples for the compacts and the Podle`s sphere plus comments on the relations to matricial quantum metrics. In ver.3 the word "deformations" in the original title has changed to "degenerations" and some illustrative remarks on this aspect are adde

    Principles of Discrete Time Mechanics: I. Particle Systems

    Full text link
    We discuss the principles to be used in the construction of discrete time classical and quantum mechanics as applied to point particle systems. In the classical theory this includes the concept of virtual path and the construction of system functions from classical Lagrangians, Cadzow's variational principle applied to the action sum, Maeda-Noether and Logan invariants of the motion, elliptic and hyperbolic harmonic oscillator behaviour, gauge invariant electrodynamics and charge conservation, and the Grassmannian oscillator. First quantised discrete time mechanics is discussed via the concept of system amplitude, which permits the construction of all quantities of interest such as commutators and scattering amplitudes. We discuss stroboscopic quantum mechanics, or the construction of discrete time quantum theory from continuous time quantum theory and show how this works in detail for the free Newtonian particle. We conclude with an application of the Schwinger action principle to the important case of the quantised discrete time inhomogeneous oscillator.Comment: 35 pages, LateX, To be published in J.Phys.A: Math.Gen. Basic principles stated: applications to field theory in subsequent papers of series contact email address: [email protected]

    Pluricomplex Green and Lempert functions for equally weighted poles

    Full text link
    For Ω\Omega a domain in Cn\mathbb C^n, the pluricomplex Green function with poles a1,...,aN∈Ωa_1, ...,a_N \in \Omega is defined as G(z):=sup⁥{u(z):u∈PSH−(Ω),u(x)≀log⁥∄x−aj∄+Cjwhenx→aj,j=1,...,N}G(z):=\sup \{u(z): u\in PSH_-(\Omega), u(x)\le \log \|x-a_j\|+C_j \text{when} x \to a_j, j=1,...,N \}. When there is only one pole, or two poles in the unit ball, it turns out to be equal to the Lempert function defined from analytic disks into Ω\Omega by LS(z):=inf⁥{∑j=1NÎœjlog⁥∣ζj∣:∃ϕ∈O(D,Ω),ϕ(0)=z,ϕ(ζj)=aj,j=1,...,N}L_S (z) :=\inf \{\sum^N_{j=1}\nu_j\log|\zeta_j|: \exists \phi\in \mathcal {O}(\mathbb D,\Omega), \phi(0)=z, \phi(\zeta_j)=a_j, j=1,...,N \}. It is known that we always have LS(z)≄GS(z)L_S (z) \ge G_S(z). In the more general case where we allow weighted poles, there is a counterexample to equality due to Carlehed and Wiegerinck, with Ω\Omega equal to the bidisk. Here we exhibit a counterexample using only four distinct equally weighted poles in the bidisk. In order to do so, we first define a more general notion of Lempert function "with multiplicities", analogous to the generalized Green functions of Lelong and Rashkovskii, then we show how in some examples this can be realized as a limit of regular Lempert functions when the poles tend to each other. Finally, from an example where LS(z)>GS(z)L_S (z) > G_S(z) in the case of multiple poles, we deduce that distinct (but close enough) equally weighted poles will provide an example of the same inequality. Open questions are pointed out about the limits of Green and Lempert functions when poles tend to each other.Comment: 25 page

    Convergence and multiplicities for the Lempert function

    Full text link
    Given a domain Ω⊂C\Omega \subset \mathbb C, the Lempert function is a functional on the space Hol (\D,\Omega) of analytic disks with values in Ω\Omega, depending on a set of poles in Ω\Omega. We generalize its definition to the case where poles have multiplicities given by local indicators (in the sense of Rashkovskii's work) to obtain a function which still dominates the corresponding Green function, behaves relatively well under limits, and is monotonic with respect to the indicators. In particular, this is an improvement over the previous generalization used by the same authors to find an example of a set of poles in the bidisk so that the (usual) Green and Lempert functions differ.Comment: 24 pages; many typos corrected thanks to the referee of Arkiv for Matemati
    • 

    corecore