94 research outputs found
Outils pour l’identification des paramètres de raideur des robots à l’aide d’un logiciel de CAO
This report proposes a CAD-based approach for identification of the elasto-static parameters of the robotic manipulators. The main contributions are in the areas of virtual experiment planning and algorithmic data processing, which allows to obtain the stiffness matrix with required accuracy. In contrast to previous works, the developed technique operates with the deflection field produced by virtual experiments in a CAD environment. The proposed approach provides high identification accuracy (about 0.1% for the stiffness matrix element) and is able to take into account the real shape of the link, coupling between rotational/translational deflections and joint particularities. To compute the stiffness matrix, the numerical technique has been developed, and some recommendations for optimal settings of the virtual experiments are given. In order to minimize the identification errors, the statistical data processing technique was applied. The advantages of the developed approach have been confirmed by case studies dealing with the links of parallel manipulator of the Orthoglide family, for which the identification errors have been reduced to 0.1%ANR COROUSS
Modèle des interactions dynamiques
In robotic-based machining, an interaction between the workpiece and technological tool causes essential deflections that significantly decrease the manufacturing accuracy. Relevant compliance errors highly depend on the manipulator configuration and essentially differ throughout the workspace. Their influence is especially important for heavy serial robots. To overcome this difficulty this report presents a new technique for compensation of the compliance errors caused by technological process. In contrast to previous works, this technique is based on the non-linear stiffness model and the reduced elasto-dynamic model of the robotic based milling process. The advantages and practical significance of the proposed approach are illustrated by milling with of KUKA KR270. It is shown that after error compensation technique significantly increase the accuracy of milling.ANR COROUSS
CAD-based approach for identification of elasto-static parameters of robotic manipulators
The paper presents an approach for the identification of elasto-static
parameters of a robotic manipulator using the virtual experiments in a CAD
environment. It is based on the numerical processing of the data extracted from
the finite element analysis results, which are obtained for isolated
manipulator links. This approach allows to obtain the desired stiffness
matrices taking into account the complex shape of the links, couplings between
rotational/translational deflections and particularities of the joints
connecting adjacent links. These matrices are integral parts of the manipulator
lumped stiffness model that are widely used in robotics due to its high
computational efficiency. To improve the identification accuracy,
recommendations for optimal settings of the virtual experiments are given, as
well as relevant statistical processing techniques are proposed. Efficiency of
the developed approach is confirmed by a simulation study that shows that the
accuracy in evaluating the stiffness matrix elements is about 0.1%.Comment: arXiv admin note: substantial text overlap with arXiv:0909.146
Stiffness modeling of non-perfect parallel manipulators
The paper focuses on the stiffness modeling of parallel manipulators composed
of non-perfect serial chains, whose geometrical parameters differ from the
nominal ones. In these manipulators, there usually exist essential internal
forces/torques that considerably affect the stiffness properties and also
change the end-effector location. These internal load-ings are caused by
elastic deformations of the manipulator ele-ments during assembling, while the
geometrical errors in the chains are compensated for by applying appropriate
forces. For this type of manipulators, a non-linear stiffness modeling
tech-nique is proposed that allows us to take into account inaccuracy in the
chains and to aggregate their stiffness models for the case of both small and
large deflections. Advantages of the developed technique and its ability to
compute and compensate for the compliance errors caused by different factors
are illustrated by an example that deals with parallel manipulators of the
Or-thoglide famil
Stiffness Analysis Of Multi-Chain Parallel Robotic Systems
The paper presents a new stiffness modelling method for multi-chain parallel
robotic manipulators with flexible links and compliant actuating joints. In
contrast to other works, the method involves a FEA-based link stiffness
evaluation and employs a new solution strategy of the kinetostatic equations,
which allows computing the stiffness matrix for singular postures and to take
into account influence of the external forces. The advantages of the developed
technique are confirmed by application examples, which deal with stiffness
analysis of a parallel manipulator of the Orthoglide famil
Accuracy Improvement for Stiffness Modeling of Parallel Manipulators
The paper focuses on the accuracy improvement of stiffness models for
parallel manipulators, which are employed in high-speed precision machining. It
is based on the integrated methodology that combines analytical and numerical
techniques and deals with multidimensional lumped-parameter models of the
links. The latter replace the link flexibility by localized 6-dof virtual
springs describing both translational/rotational compliance and the coupling
between them. There is presented detailed accuracy analysis of the stiffness
identification procedures employed in the commercial CAD systems (including
statistical analysis of round-off errors, evaluating the confidence intervals
for stiffness matrices). The efficiency of the developed technique is confirmed
by application examples, which deal with stiffness analysis of translational
parallel manipulators
Modèles élastiques et élasto‐dynamiques de robots porteurs
The report presents an advanced stiffness modeling technique for parallel manipulators composed of perfect and non-perfect serial chains. The developed technique contributes both to the stiffness modeling of serial and parallel manipulators under internal and external loadings. Particular attention has been done to enhancement of VJM-based stiffness modeling technique for the case of auxiliary loading (applied to the intermediate points). The obtained results allows us to take into account gravity forces induced by the link weights which are assumed to be applied in the intermediate points. In contrast to other works, the developed technique is able to take into account deviation of the end-platform location because of inaccuracy in the geometry of serial chains, which does not allow to assemble manipulator without internal stresses. The developed aggregation procedure combines the chain stiffness models and produces the relevant force-deflection relation, the aggregated Cartesian stiffness matrix and the reference point displacements caused by inaccuracy in kinematic chains. The developed technique can be applied to both over-constrained and under-constrained manipulators, and is suitable for the cases of both small and large deflections.ANR COROUSS
Design of Experiments for Calibration of Planar Anthropomorphic Manipulators
The paper presents a novel technique for the design of optimal calibration
experiments for a planar anthropomorphic manipulator with n degrees of freedom.
Proposed approach for selection of manipulator configurations allows
essentially improving calibration accuracy and reducing parameter
identification errors. The results are illustrated by application examples that
deal with typical anthropomorphic manipulators.Comment: Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME International
Conference on, Budapest : Hungary (2011
Outils pour l’identification des paramètres de raideur des robots à l’aide d’un logiciel de CAO
This report proposes a CAD-based approach for identification of the elasto-static parameters of the robotic manipulators. The main contributions are in the areas of virtual experiment planning and algorithmic data processing, which allows to obtain the stiffness matrix with required accuracy. In contrast to previous works, the developed technique operates with the deflection field produced by virtual experiments in a CAD environment. The proposed approach provides high identification accuracy (about 0.1% for the stiffness matrix element) and is able to take into account the real shape of the link, coupling between rotational/translational deflections and joint particularities. To compute the stiffness matrix, the numerical technique has been developed, and some recommendations for optimal settings of the virtual experiments are given. In order to minimize the identification errors, the statistical data processing technique was applied. The advantages of the developed approach have been confirmed by case studies dealing with the links of parallel manipulator of the Orthoglide family, for which the identification errors have been reduced to 0.1%ANR COROUSS
Compliance error compensation technique for parallel robots composed of non-perfect serial chains
The paper presents the compliance errors compensation technique for
over-constrained parallel manipulators under external and internal loadings.
This technique is based on the non-linear stiffness modeling which is able to
take into account the influence of non-perfect geometry of serial chains caused
by manufacturing errors. Within the developed technique, the deviation
compensation reduces to an adjustment of a target trajectory that is modified
in the off-line mode. The advantages and practical significance of the proposed
technique are illustrated by an example that deals with groove milling by the
Orthoglide manipulator that considers different locations of the workpiece. It
is also demonstrated that the impact of the compliance errors and the errors
caused by inaccuracy in serial chains cannot be taken into account using the
superposition principle.Comment: arXiv admin note: text overlap with arXiv:1204.175
- …