400 research outputs found

    Compact shell solitons in K field theories

    Full text link
    Some models providing shell-shaped static solutions with compact support (compactons) in 3+1 and 4+1 dimensions are introduced, and the corresponding exact solutions are calculated analytically. These solutions turn out to be topological solitons, and may be classified as maps S3→S3S^3 \to S^3 and suspended Hopf maps, respectively. The Lagrangian of these models is given by a scalar field with a non-standard kinetic term (K field) coupled to a pure Skyrme term restricted to S2S^2, rised to the appropriate power to avoid the Derrick scaling argument. Further, the existence of infinitely many exact shell solitons is explained using the generalized integrability approach. Finally, similar models allowing for non-topological compactons of the ball type in 3+1 dimensions are briefly discussed.Comment: 10 pages, latex, 2 figures, change in title and introduction. Discussion section, 2 figures and references adde

    Some Comments on BPS systems

    Full text link
    We look at simple BPS systems involving more than one field. We discuss the conditions that have to be imposed on various terms in Lagrangians involving many fields to produce BPS systems and then look in more detail at the simplest of such cases. We analyse in detail BPS systems involving 2 interacting Sine-Gordon like fields, both when one of them has a kink solution and the second one either a kink or an antikink solution. We take their solitonic static solutions and use them as initial conditions for their evolution in Lorentz covariant versions of such models. We send these structures towards themselves and find that when they interact weakly they can pass through each other with a phase shift which is related to the strength of their interaction. When they interact strongly they repel and reflect on each other. We use the method of a modified gradient flow in order to visualize the solutions in the space of fields.Comment: 27 pages, 17 figure

    Scaling, self-similar solutions and shock waves for V-shaped field potentials

    Full text link
    We investigate a (1+1)-dimensional nonlinear field theoretic model with the field potential V(ϕ)∣=∣ϕ∣.V(\phi)| = |\phi|. It can be obtained as the universal small amplitude limit in a class of models with potentials which are symmetrically V-shaped at their minima, or as a continuum limit of certain mechanical system with infinite number of degrees of freedom. The model has an interesting scaling symmetry of the 'on shell' type. We find self-similar as well as shock wave solutions of the field equation in that model.Comment: Two comments and one reference adde

    Scattering of compact oscillons

    Get PDF
    We study various aspects of the scattering of generalized compact oscillons in the signum-Gordon model in (1+1) dimensions. Using covariance of the model we construct traveling oscillons and study their interactions and the dependence of these interactions on the oscillons’ initial velocities and their relative phases. The scattering processes transform the two incoming oscillons into two outgoing ones and lead to the generation of extra oscillons which appear in the form of jet-like cascades. Such cascades vanish for some values of free parameters and the scattering processes, even though our model is non-integrable, resemble typical scattering processes normally observed for integrable or quasi-integrable models. Occasionally, in the intermediate stage of the process, we have seen the emission of shock waves and we have noticed that, in general, outgoing oscillons have been more involved in their emission than the initial ones i.e. they have a border in the form of curved worldlines. The results of our studies of the scattering of oscillons suggest that the radiation of the signum-Gordon model has a fractal-like nature
    • …
    corecore