64 research outputs found

    Three-dimensional spontaneous magnetic reconnection in neutral current sheets

    Full text link
    Magnetic reconnection in an antiparallel uniform Harris current sheet equilibrium, which is initially perturbed by a region of enhanced resistivity limited in all three dimensions, is investigated through compressible magnetohydrodynamic simulations. Variable resistivity, coupled to the dynamics of the plasma by an electron-ion drift velocity criterion, is used during the evolution. A phase of magnetic reconnection amplifying with time and leading to eruptive energy release is triggered only if the initial perturbation is strongly elongated in the direction of current flow or if the threshold for the onset of anomalous resistivity is significantly lower than in the corresponding two-dimensional case. A Petschek-like configuration is then built up for \sim 100 Alfven times, but remains localized in the third dimension. Subsequently, a change of topology to an O-line at the center of the system (``secondary tearing'') occurs. This leads to enhanced and time-variable reconnection, to a second pair of outflow jets directed along the O-line, and to expansion of the reconnection process into the third dimension. High parallel current density components are created mainly near the region of enhanced resistivity.Comment: 22 pages, 14 figures (Figs. 3,9,10, and 14 as external GIF-Files

    A Model for Confined Solar Eruptions Including External Reconnection

    Full text link
    The violent disruption of the coronal magnetic field is often observed to be restricted to the low corona, appearing as a confined eruption. The possible causes of the confinement remain elusive. Here, we model the eruption of a magnetic flux rope in a quadrupolar active region, with the parameters set such that magnetic X-lines exist both below and above the rope. This facilitates the onset of magnetic reconnection in either place but with partly opposing effects on the eruption. The lower reconnection initially adds poloidal flux to the rope, increasing the upward hoop force and supporting the rise of the rope. However, when the flux of the magnetic side lobes enters the lower reconnection, the flux rope is found to separate from the reconnection site and the flux accumulation ceases. At the same time, the upper reconnection begins to reduce the poloidal flux of the rope, decreasing its hoop force; eventually this cuts the rope completely. The relative weight of the two reconnection processes is varied in the model, and it is found that their combined effect and the tension force of the overlying field confine the eruption if the flux ratio of the outer to the inner polarities exceeds a threshold, which is about 1.3 for our Cartesian box and chosen parameters. We hence propose that external reconnection between an erupting flux rope and overlying flux can play a vital role in confining eruptions.Comment: submitted to ApJ Letters that has addressed the referee repor

    Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections

    Full text link
    We examine the early phases of two near-limb filament destabilization involved in coronal mass ejections on 16 June and 27 July 2005, using high-resolution, high-cadence observations made with the Transition Region and Coronal Explorer (TRACE), complemented by coronagraphic observations by Mauna Loa and the SOlar and Heliospheric Observatory (SOHO). The filaments' heights above the solar limb in their rapid-acceleration phases are best characterized by a height dependence h(t) ~ t^m with m near, or slightly above, 3 for both events. Such profiles are incompatible with published results for breakout, MHD-instability, and catastrophe models. We show numerical simulations of the torus instability that approximate this height evolution in case a substantial initial velocity perturbation is applied to the developing instability. We argue that the sensitivity of magnetic instabilities to initial and boundary conditions requires higher fidelity modeling of all proposed mechanisms if observations of rise profiles are to be used to differentiate between them. The observations show no significant delays between the motions of the filament and of overlying loops: the filaments seem to move as part of the overall coronal field until several minutes after the onset of the rapid-acceleration phase.Comment: ApJ (2007, in press

    Slow Rise and Partial Eruption of a Double-Decker Filament. I Observations and Interpretation

    Full text link
    We study an active-region dextral filament which was composed of two branches separated in height by about 13 Mm. This "double-decker" configuration sustained for days before the upper branch erupted with a GOES-class M1.0 flare on 2010 August 7. Analyzing this evolution, we obtain the following main results. 1) During hours before the eruption, filament threads within the lower branch were observed to intermittently brighten up, lift upward, and then merge with the upper branch. The merging process contributed magnetic flux and current to the upper branch, resulting in its quasi-static ascent. 2) This transfer might serve as the key mechanism for the upper branch to lose equilibrium by reaching the limiting flux that can be stably held down by the overlying field or by reaching the threshold of the torus instability. 3) The erupting branch first straightened from a reverse S shape that followed the polarity inversion line and then writhed into a forward S shape. This shows a transfer of left-handed helicity in a sequence of writhe-twist-writhe. The fact that the initial writhe is converted into the twist of the flux rope excludes the helical kink instability as the trigger process of the eruption, but supports the occurrence of the instability in the main phase, which is indeed indicated by the very strong writhing motion. 4) A hard X-ray sigmoid, likely of coronal origin, formed in the gap between the two original filament branches in the impulsive phase of the associated flare. This supports a model of transient sigmoids forming in the vertical flare current sheet. 5) Left-handed magnetic helicity is inferred for both branches of the dextral filament. 6) Two types of force-free magnetic configurations are compatible with the data, a double flux rope equilibrium and a single flux rope situated above a loop arcade

    Eruption of a Kink-Unstable Filament in Active Region NOAA 10696

    Full text link
    We present rapid-cadence Transition Region And Coronal Explorer (TRACE) observations which show evidence of a filament eruption from active region NOAA 10696, accompanied by an X2.5 flare, on 2004 November 10. The eruptive filament, which manifests as a fast coronal mass ejection some minutes later, rises as a kinking structure with an apparently exponential growth of height within TRACE's field of view. We compare the characteristics of this filament eruption with MHD numerical simulations of a kink-unstable magnetic flux rope, finding excellent qualitative agreement. We suggest that, while tether weakening by breakout-like quadrupolar reconnection may be the release mechanism for the previously confined flux rope, the driver of the expansion is most likely the MHD helical kink instability.Comment: Accepted by ApJ Letters. 4 figures (Fig. 3 in two parts). For MPEG files associated with Figure 1, see: http://www.mssl.ucl.ac.uk/~drw/papers/kink/ktrace.mpg http://www.mssl.ucl.ac.uk/~drw/papers/kink/kmdi.mpg http://www.mssl.ucl.ac.uk/~drw/papers/kink/ksimu.mp

    The eating disorder examination-questionnaire 8: a brief measure of eating disorder psychopathology (EDE-Q8)

    Get PDF
    Objective: The aim of this study was to develop, evaluate, and standardize a short form of the well-established Eating Disorder Examination-Questionnaire (EDE-Q). The newly developed EDE-Q8 was required to reflect the originally postulated structure of the EDE-Q. Method: Data were drawn from two nationwide representative population surveys in Germany: a survey conducted to develop the EDE-Q8 in 2009 (N = 2520); and a survey conducted in 2013 (N = 2508) for the evaluation and calculation of EDE-Q8 percentiles. Results: The EDE-Q8 had excellent item characteristics, very good reliability and a very good model fit for the postulated second-order factorial structure. Furthermore, a strong correlation between the EDE-Q8 and a 13 item short form of the Eating Attitudes Test was observed. Discussion: The EDE-Q8 appears to be particularly suitable in epidemiological research, when an economical assessment of global eating disorder psychopathology is required
    • 

    corecore