378 research outputs found

    Fermi-Edge Resonance and Tunneling in Nonequilibrium Electron Gas

    Full text link
    Fermi-edge singularity changes in a dramatic way in a nonequilibrium system, acquiring features which reflect the structure of energy distribution. In particular, it splits into several components if the energy distribution exhibits multiple steps. While conventional approaches, such as bosonization, fail to describe the nonequilibrium problem, an exact solution for a generic energy distribution can be obtained with the help of the method of functional determinants. In the case of a split Fermi distribution, while the `open loop' contribution to Green's function has power law singularities, the tunneling density of states profile exhibits broadened peaks centered at Fermi sub-levels.Comment: 5 pages, 1 figur

    A thick shell Casimir effect

    Full text link
    We consider the Casimir energy of a thick dielectric-diamagnetic shell under a uniform velocity light condition, as a function of the radii and the permeabilities. We show that there is a range of parameters in which the stress on the outer shell is inward, and a range where the stress on the outer shell is outward. We examine the possibility of obtaining an energetically stable configuration of a thick shell made of a material with a fixed volume

    Casimir Energy for a Purely Dielectric Cylinder by the Mode Summation Method

    Full text link
    We use the mode summation method together with zeta-function regularization to compute the Casimir energy of a dilute dielectric cylinder. The method is very transparent, and sheds light on the reason the resulting energy vanishes.Comment: 11 pages, REVTeX, no figure

    Computer program for determining mass properties of a rigid structure

    Get PDF
    A computer program was developed for the rapid computation of the mass properties of complex structural systems. The program uses rigid body analyses and permits differences in structural material throughout the total system. It is based on the premise that complex systems can be adequately described by a combination of basic elemental shapes. Simple geometric data describing size and location of each element and the respective material density or weight of each element were the only required input data. From this minimum input, the program yields system weight, center of gravity, moments of inertia and products of inertia with respect to mutually perpendicular axes through the system center of gravity. The program also yields mass properties of the individual shapes relative to component axes

    Tunable Fermi-Edge Resonance in an Open Quantum Dot

    Full text link
    Resonant tunneling in an open mesoscopic quantum dot is proposed as a vehicle to realize a tunable Fermi-edge resonance with variable coupling strength. We solve the x-ray edge problem for a generic nonseparable scatterer and apply it to describe tunneling in a quantum dot. The tunneling current power law exponent is linked to the S-matrix of the dot. The control of scattering by varying the dot shape and coupling to the leads allows to explore a wide range of exponents. Transport properties, such as weak localization, mesoscopic conductance fluctuations, and sensitivity to Wigner-Dyson ensemble type, have their replicas in the Fermi-edge singularity.Comment: 4 pages, 3 figure

    Photon Green's function and the Casimir energy in a medium

    Get PDF
    A new expansion is established for the Green's function of the electromagnetic field in a medium with arbitrary ϵ\epsilon and μ\mu. The obtained Born series are shown to consist of two types of interactions - the usual terms (denoted P\cal P) that appear in the Lifshitz theory combined with a new kind of terms (which we denote by Q\cal Q) associated with the changes in the permeability of the medium. Within this framework the case of uniform velocity of light (ϵμ=const\epsilon\mu={\rm const}) is studied. We obtain expressions for the Casimir energy density and the first non-vanishing contribution is manipulated to a simplified form. For (arbitrary) spherically symmetric μ\mu we obtain a simple expression for the electromagnetic energy density, and as an example we obtain from it the Casimir energy of a dielectric-diamagnetic ball. It seems that the technique presented can be applied to a variety of problems directly, without expanding the eigenmodes of the problem and using boundary condition considerations

    Factorization of quantum charge transport for non-interacting fermions

    Full text link
    We show that the statistics of the charge transfer of non-interacting fermions through a two-lead contact is generalized binomial, at any temperature and for any form of the scattering matrix: an arbitrary charge-transfer process can be decomposed into independent single-particle events. This result generalizes previous studies of adiabatic pumping at zero temperature and of transport induced by bias voltage.Comment: 13 pages, 3 figures, typos corrected, references adde
    • …
    corecore