27 research outputs found

    On relativistic discs and rings

    Get PDF
    Sequences of infinitesimally thin, uniformly rotating, self-gravitating relativistic discs with internal two-dimensional pressure have been constructed. It is shown that in weaker relativistic configurations the sequences undergo a continuous bifurcation from a disc to a ring structure, while in stronger relativistic cases the sequences terminate at the mass-shed limit where gravitational forces are exactly balanced by centrifugal forces.Comment: 9 pages, requires mn.sty and epsf.sty, 12 figures included, accepted by Monthly Notices of the Royal Astronomical Societ

    Mass Flow and Accretion through gaps in Accretion Discs

    Get PDF
    We study the structure and dynamics of the gap created by a protoplanet in an accretion disc. The hydrodynamic equations for a flat, two-dimensional, non-selfgravitating protostellar accretion disc with an embedded, Jupiter sized protoplanet on a circular orbit are solved. To simulate possible accretion of mass onto the protoplanet we continually remove mass from the interior of the planet's Roche lobe which is monitored. Firstly, it is shown that consistent results independent on numerical issues (such as boundary or initial conditions, artificial viscosity or resolution) can be obtained. Then, a detailed parameter study delineates the influence of the disc viscosity and pressure on the magnitude of the accretion rate. We find that, even after the formation of a gap in the disc, the planet is still able to accrete more mass from the disc. This accretion occurs from regions of the disc which are radially exterior and interior to the planet's orbital radius. The rate depends on the magnitude of the viscosity and vertical thickness of the disc. For a disc viscosity alpha=10^{-3} and vertical thickness H/r=0.05 we estimate the time scale for the accumulation of one Jupiter mass to be of order hundred thousand years. For a larger(smaller) viscosity and disc thickness this accretion rate is increasing(decreasing). For a very small viscosity (alpha < 5 10^{-4}) the mass accretion rate through the gap onto the planet is markedly reduced, and the corresponding accretion time scale becomes larger than the viscous evolution time of the disc.Comment: 15 pages, Latex, uses MN Latex style v1.4, accepted by MN. Paper, figures and mpeg simulation available at http://www.tpi.uni-jena.de/~wak/research/gap/gap.htm

    On the evolution of the resonant planetary system HD128311

    Get PDF
    A significant number of the known multiple exoplanetary systems are containing a pair of giant planets engaged in a low order mean motion resonance. Such a resonant condition protects the dynamics of these planets resulting in very stable orbits. According to recent studies the capture into a resonance is the result of a planetary migration process induced by the interaction of the planets with a protoplanetary disk. If the migration is slow enough (adiabatic) next to a mean motion resonance, the two planets will also be in apsidal corotation. The recently refined orbital parameters of the system HD 128311 suggest that the two giant planets are in a 2:1 mean motion resonance, however without exhibiting apsidal corotation. Thus the evolution of this system can not be described by an adiabatic migration process alone. We present possible evolution scenarios of this system combining migration processes and sudden perturbations. We model migration scenarios through numerical integration of the gravitational N-body problem with additional non-conservative forces. Planet-planet scattering has been investigated by N-body simulations. We show that the present dynamical state of the system HD128311 may be explained by such evolutionary processes.Comment: 4 Pages, 7 Figures, accepted for AA Letter

    Dynamical Evolution of Planets in Disks

    Get PDF
    We study the evolution of a system consisting of two protoplanets still embedded in a protoplanetary disk. Results of two different numerical approaches are presented. In the first kind of model the motion of the disk material is followed by fully viscous hydrodynamical simulations, and the planetary motion is determined by N-body calculations including exactly the gravitational potential from the disk material. In the second kind we only solve the N-body part and add additional analytically given forces which model the effect of the torques of the disk. This type of modeling is of course orders of magnitudes faster than the full hydro-model. Another advantage of this two-fold approach is the possibility of adjusting the otherwise unknown parameters of the simplified model. The results give very good agreement between the methods. Using two different initial setups for the planets and disk, we obtain in the first case a resonant trapping into the 3:1 resonance, and in the second case a trapping into the 2:1 resonance. Resonant capture leads to a rise in the eccentricity and to an alignment of the of the spatial orientation of orbits. The characteristics of the numerical results agree very favorably with those of 3 observed planetary systems (GJ 876, HD 82943, and 55 Cnc) known to be in mean motion resonances.Comment: 14 Pages, Proc. of IAU Colloquium 189, Astrophysical Tides, Nanjing Sept. 2002, uses kluwer.st

    Planet migration in three-dimensional radiative discs

    Full text link
    The migration of growing protoplanets depends on the thermodynamics of the ambient disc. Standard modelling, using locally isothermal discs, indicate in the low planet mass regime an inward (type-I) migration. Taking into account non-isothermal effects, recent studies have shown that the direction of the type-I migration can change from inward to outward. In this paper we extend previous two-dimensional studies, and investigate the planet-disc interaction in viscous, radiative discs using fully three-dimensional radiation hydrodynamical simulations of protoplanetary accretion discs with embedded planets, for a range of planetary masses. We use an explicit three-dimensional (3D) hydrodynamical code NIRVANA that includes full tensor viscosity. We have added implicit radiation transport in the flux-limited diffusion approximation, and to speed up the simulations significantly we have newly adapted and implemented the FARGO-algorithm in a 3D context. First, we present results of test simulations that demonstrate the accuracy of the newly implemented FARGO-method in 3D. For a planet mass of 20 M_earth we then show that the inclusion of radiative effects yields a torque reversal also in full 3D. For the same opacity law used the effect is even stronger in 3D than in the corresponding 2D simulations, due to a slightly thinner disc. Finally, we demonstrate the extent of the torque reversal by calculating a sequence of planet masses. Through full 3D simulations of embedded planets in viscous, radiative discs we confirm that the migration can be directed outwards up to planet masses of about 33 M_earth. Hence, the effect may help to resolve the problem of too rapid inward migration of planets during their type-I phase.Comment: 16 pages, Astronomy&Astrophysics, in pres

    Stellar irradiated discs and implications on migration of embedded planets I: equilibrium discs

    Full text link
    The strength and direction of migration of low mass planets depends on the disc's thermodynamics. In discs where the viscous heating is balanced by radiative transport, the migration can be directed outwards, a process which extends the lifetime of growing planetary embryos. We investigate the influence of opacity and stellar irradiation on the disc thermodynamics. Utilizing the resulting disc structure, we determine the regions of outward migration. We perform two-dimensional numerical simulations of equilibrium discs with viscous heating, radiative cooling and stellar irradiation. We use the hydrodynamical code NIRVANA that includes a full tensor viscosity and stellar irradiation, as well as a two temperature solver that includes radiation transport in the flux-limited diffusion approximation. The migration is studied by using torque formulae. In the constant opacity case, we reproduce the analytical results of a black-body disc: the stellar irradiation dominates in the outer regions -- leading to flaring -- while the viscous heating dominates close to the star. We find that the inner edge of the disc should not be significantly puffed-up by the stellar irradiation. If the opacity depends on the local density and temperature, the structure of the disc is different, and several bumps in the aspect ratio H/r appear, due to transitions between different opacity regimes. The bumps in the disc can shield the outer disc from stellar irradiation. Stellar irradiation is an important factor for determining the disc structure and has dramatic consequences for the migration of embedded planets. Compared to discs with only viscous heating, a stellar irradiated disc features a much smaller region of outward migration for a range of planetary masses. This suggests that the region where the formation of giant planet cores takes place is smaller, which in turn might lead to a shorter growth phase
    corecore