56 research outputs found

    Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies

    Full text link

    Validity of the cold pressor test and pain sensitivity questionnaire via online self-administration.

    No full text
    To determine the feasibility of complex home-based phenotyping, 1,876 research participants from the customer base of 23andMe completed an online version of a Pain Sensitivity Questionnaire (PSQ) as well as a cold pressor test (CPT) which is used in clinical assessments of pain. Overall our online version of the PSQ performed similarly to the original pen-and-paper version. Construct validity of the PSQ total was demonstrated by internal consistency and consistent discrimination between more and less painful items. Criterion validity was demonstrated by correlation with pain sensitivity as measured by the CPT. Within the same cohort we performed a cold pressor test using a layperson description and household equipment. Comparison with published reports from controlled studies revealed similar distributions of cold pain tolerance times (i.e., time elapsed before removing the hand from the water). Of those who elected to participate in the CPT, a large majority of participants did not report issues with the test procedure or noncompliance with the instructions (97%). We confirmed a large sex difference in CPT thresholds in line with published data, such that women removed their hands from the water at a median of 54.2 seconds, with men lasting for a median time of 82.7 seconds (Kruskal-Wallis statistic, p < 0.0001), but other factors like age or current pain treatment were at most weakly associated, and inconsistently between men and women. We introduce a new paradigm for performing pain testing, called testing@home, that, in the case of cold nociception, showed comparable results to studies conducted under controlled conditions and supervision of a health care professional

    Characterization of the melanocortin-4-receptor nonsense mutation W16X <em>in vitro</em> and <em>in vivo</em>.

    No full text
    Several genetic diseases are triggered by nonsense mutations leading to the formation of truncated and defective proteins. Aminoglycosides have the capability to mediate a bypass of stop mutations during translation thus resulting in a rescue of protein expression. So far no attention has been directed to obesity-associated stop mutations as targets for nonsense suppression. Herein, we focus on the characterization of the melanocortin-4-receptor (MC4R) nonsense allele W16X identified in obese subjects. Cell culture assays revealed a loss-of-function of Mc4r(X16) characterized by impaired surface expression and defect signaling. The aminoglycoside G-418 restored Mc4r(X16) function in vitro demonstrating that Mc4r(X16) is susceptible to nonsense suppression. For the evaluation of nonsense suppression in vivo, we generated a Mc4r(X16) knock-in mouse line by gene targeting. Mc4r(X16) knock-in mice developed hyperphagia, impaired glucose tolerance, severe obesity and an increased body length demonstrating that this new mouse model resembles typical characteristics of Mc4r deficiency. In a first therapeutic trial, the aminoglycosides gentamicin and amikacin induced no amelioration of obesity. Further experiments with Mc4r(X16) knock-in mice will be instrumental to establish nonsense suppression for Mc4r as an obesity-associated target gene expressed in the central nervous system
    corecore