70 research outputs found

    Exhaustive Sampling of Docking Poses Reveals Binding Hypotheses for Propafenone Type Inhibitors of P-Glycoprotein

    Get PDF
    Overexpression of the xenotoxin transporter P-glycoprotein (P-gp) represents one major reason for the development of multidrug resistance (MDR), leading to the failure of antibiotic and cancer therapies. Inhibitors of P-gp have thus been advocated as promising candidates for overcoming the problem of MDR. However, due to lack of a high-resolution structure the concrete mode of interaction of both substrates and inhibitors is still not known. Therefore, structure-based design studies have to rely on protein homology models. In order to identify binding hypotheses for propafenone-type P-gp inhibitors, five different propafenone derivatives with known structure-activity relationship (SAR) pattern were docked into homology models of the apo and the nucleotide-bound conformation of the transporter. To circumvent the uncertainty of scoring functions, we exhaustively sampled the pose space and analyzed the poses by combining information retrieved from SAR studies with common scaffold clustering. The results suggest propafenone binding at the transmembrane helices 5, 6, 7 and 8 in both models, with the amino acid residue Y307 playing a crucial role. The identified binding site in the non-energized state is overlapping with, but not identical to, known binding areas of cyclic P-gp inhibitors and verapamil. These findings support the idea of several small binding sites forming one large binding cavity. Furthermore, the binding hypotheses for both catalytic states were analyzed and showed only small differences in their protein-ligand interaction fingerprints, which indicates only small movements of the ligand during the catalytic cycle

    Random mutagenesis of the prokaryotic peptide transporter YdgR identifies potential periplasmic gating residues

    Get PDF
    The peptide transporter (PTR) family represents a group of proton-coupled secondary transporters responsible for bulk uptake of amino acids in the form of di- and tripeptides, an essential process employed across species ranging from bacteria to humans. To identify amino acids critical for peptide transport in a prokaryotic PTR member, we have screened a library of mutants of the Escherichia coli peptide transporter YdgR using a high-throughput substrate uptake assay.Wehave identified 35 single point mutations that result in a full or partial loss of transport activity. Additional analysis, including homology modeling based on the crystal structure of the Shewanella oneidensis peptide transporter PepT so, identifies Glu 56 and Arg 305 as potential periplasmic gating residues. In addition to providing new insights into transport by members of the PTR family, these mutants provide valuable tools for further study of the mechanism of peptide transport

    Discovery of the inhibitory effect of a phosphatidylinositol derivative on P-glycoprotein by virtual screening followed by <i>in vitro</i> cellular studies

    Get PDF
    P-glycoprotein is capable of effluxing a broad range of cytosolic and membrane penetrating xenobiotic substrates, thus leading to multi-drug resistance and posing a threat for the therapeutic treatment of several diseases, including cancer and central nervous disorders. Herein, a virtual screening campaign followed by experimental validation in Caco-2, MDKCII, and MDKCII mdr1 transfected cell lines has been conducted for the identification of novel phospholipids with P-gp transportation inhibitory activity. Phosphatidylinositol-(1,2-dioctanoyl)-sodium salt (8∶0 PI) was found to significantly inhibit transmembrane P-gp transportation in vitro in a reproducible-, cell line-, and substrate-independent manner. Further tests are needed to determine whether this and other phosphatidylinositols could be co-administered with oral drugs to successfully increase their bioavailability. Moreover, as phosphatidylinositols and phosphoinositides are present in the human diet and are known to play an important role in signal transduction and cell motility, our finding could be of substantial interest for nutrition science as well

    Optimisation of Over-Expression in E. coli and Biophysical Characterisation of Human Membrane Protein Synaptogyrin 1

    Get PDF
    Progress in functional and structural studies of integral membrane proteins (IMPs) is lacking behind their soluble counterparts due to the great challenge in producing stable and homogeneous IMPs. Low natural abundance, toxicity when over-expressed and potential lipid requirements of IMPs are only a few reasons for the limited progress. Here, we describe an optimised workflow for the recombinant over-expression of the human tetraspan vesicle protein (TVP) synaptogyrin in Escherichia coli and its biophysical characterisation. TVPs are ubiquitous and abundant components of vesicles. They are believed to be involved in various aspects of the synaptic vesicle cycle, including vesicle biogenesis, exocytosis and endocytotic recycling. Even though TVPs are found in most cell types, high-resolution structural information for this class of membrane proteins is still missing. The optimisation of the N-terminal sequence of the gene together with the usage of the recently developed Lemo21(DE3) strain which allows the balancing of the translation with the membrane insertion rate led to a 50-fold increased expression rate compared to the classical BL21(DE3) strain. The protein was soluble and stable in a variety of mild detergents and multiple biophysical methods confirmed the folded state of the protein. Crosslinking experiments suggest an oligomeric architecture of at least four subunits. The protein stability is significantly improved in the presence of cholesteryl hemisuccinate as judged by differential light scattering. The approach described here can easily be adapted to other eukaryotic IMPs

    Predicting P-Glycoprotein-Mediated Drug Transport Based On Support Vector Machine and Three-Dimensional Crystal Structure of P-glycoprotein

    Get PDF
    Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80% on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove valuable for both rational drug design and screening

    A Functional Proteomic Method for Biomarker Discovery

    Get PDF
    The sequencing of the human genome holds out the hope for personalized medicine, but it is clear that analysis of DNA or RNA content alone is not sufficient to understand most disease processes. Proteomic strategies that allow unbiased identification of proteins and their post-transcriptional and -translation modifications are an essential complement to genomic strategies. However, the enormity of the proteome and limitations in proteomic methods make it difficult to determine the targets that are particularly relevant to human disease. Methods are therefore needed that allow rational identification of targets based on function and relevance to disease. Screening methodologies such as phage display, SELEX, and small-molecule combinatorial chemistry have been widely used to discover specific ligands for cells or tissues of interest, such as tumors. Those ligands can be used in turn as affinity probes to identify their cognate molecular targets when they are not known in advance. Here we report an easy, robust and generally applicable approach in which phage particles bearing cell- or tissue-specific peptides serve directly as the affinity probes for their molecular targets. For proof of principle, the method successfully identified molecular binding partners, three of them novel, for 15 peptides specific for pancreatic cancer

    Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features

    No full text
    The \u2018ionic effect\u2019, i.e., changes in xylem hydraulic conductivity (kxyl) due to variation of the ionic sap composition in vessels, was studied in four Acer species growing in contrasting environments differing in water availability. Hydraulic measurements of the ionic effect were performed together with measurements on the sap electrical conductivity, leaf water potential and vessel anatomy. The low ionic effect recorded in Acer pseudoplatanus L. and Acer campestre L. (15.8 and 14.7%, respectively), which represented two species from shady and humid habitats, was associated with a low vessel grouping index, high sap electrical conductivity and least negative leaf water potential. Opposite traits were found for Acer monspessulanum L. and Acer platanoides L., which showed an ionic effect of 23.6 and 23.1%, respectively, and represent species adapted to higher irradiance and/or lower water availability. These findings from closely related species provide additional support that the ionic effect could function as a compensation mechanism for embolism-induced loss of kxyl, either as a result of high evaporative demand or increased risk of hydraulic failure
    • …
    corecore