171 research outputs found

    Interference of outgoing electromagnetic waves generated by two point-like sources

    Full text link
    An energy-momentum carried by electromagnetic field produced by two point-like charged particles is calculated. Integration region considered in the evaluation of the bound and emitted quantities produced by all points of world lines up to the end points at which particles' trajectories puncture an observation hyperplane y0=ty^0=t. Radiative part of the energy-momentum contains, apart from usual integrals of Larmor terms, also the sum of work done by Lorentz forces of point-like charges acting on one another. Therefore, the combination of wave motions (retarded Li\'enard-Wiechert solutions) leads to the interaction between the sources.Comment: 38 pages, 13 figures, LaTeX2

    Amplitude-Frequency Characteristic of a Neural Control Based DC Drive

    Get PDF
    The paper interprets characteristics of a neural-control-based DC servodrive in terms of the classical theory of automatic control. It also touches on the problem of choosing training patterns to synthesize a nonlinear PID-controller with a desired amplitude-frequency characteristic and analyses the efficiency of using for this purpose input signals in form of a step function and a harmonic one. Synthesis of the neurocontroller has been performed within the framework of a three-layer perceptron. To train it, a genetic algorithm has been developed

    Regional geographic information systems of health and environmental monitoring

    Full text link
    The article describes a new scientific and methodological approach to designing geographic information systems of health and environmental monitoring for urban areas. Geographic information systems (GIS) are analytical tools of the regional health and environmental monitoring; they are used for an integrated assessment of the environmental status of a large industrial centre or a part of it. The authors analyse the environmental situation in Voronezh, a major industrial city, located in the Central Black Earth Region with a population of more than 1 million people. The proposed research methodology is based on modern approaches to the assessment of health risks caused by adverse environmental conditions. The research work was implemented using a GIS and multicriteria probabilistic and statistical evaluation to identify cause-and-effect links, a combination of action and reaction, in the dichotomy "environmental factors - public health". The analysis of the obtained statistical data confirmed an increase in childhood diseases in some areas of the city. Environmentally induced diseases include congenital malformations, tumors, endocrine and urogenital pathologies. The main factors having an adverse impact on health are emissions of carcinogens into the atmosphere and the negative impact of transport on the environment. The authors identify and characterize environmentally vulnerable parts of the city and developed principles of creating an automated system of health monitoring and control of environmental risks. The article offers a number of measures aimed at the reduction of environmental risks, better protection of public health and a more efficient environmental monitoring

    Diploidy-based Genetic Algorithm in Nonstationary Environment

    Get PDF

    Photon propagation in magnetic and electric fields with scalar/pseudoscalar couplings: a new look

    Get PDF
    We consider the minimal coupling of two photons to neutral scalar and pseudoscalar fields, as for instance in the case of the Higgs boson and axion, respectively. In this framework, we analyze the photon dispersion relations in the presence of static and homogeneous external magnetic and electric fields, by taking into account the contribution of the imaginary part of the scalar/pseudoscalar self-energy. We show that this contribution cannot be neglected when it is of the same order as the photon-scalar/pseudoscalar mixing term. In addition to the usual light-like photon propagation mode, with a refraction index n > 1, a massive mode with mass of the order of the coupled boson mass can be induced, provided that the external field is above a particular critical value. Depending on the values of the external field, photon energy, and mass of the scalar/pseudoscalar particle, the scalar/pseudoscalar width could induce a sizeable rate of photon splitting in two photons due to a strong resonant phenomenon. This effect has no practical laboratory applications for the Higgs physics due to the very large critical external magnetic or electric fields involved, for a photon energy of the order of a TeV. However, it can have relevant consequences in the axion physics or in any other scenario where light neutral scalar/pseudoscalar fields have minimal coupling with two photons.Comment: 40 pages, LaTeX, 5.eps Figures, new appendix and results included, misprints corrected, conclusions unchanged. Version to appear on Phys. Rev.

    Scattering of scalar and Dirac particles by a magnetic tube of finite radius

    Get PDF
    We consider the Dirac equation in cylindrically symmetric magnetic fields and find its normal modes as eigenfunctions of a complete set of commuting operators. This set consists of the Dirac operator itself, the zz-components of the linear and the total angular momenta, and of one of the possible spin polarization operators. The spin structure of the solution is completely fixed independently of the radial distribution of the magnetic field which influences only the radial modes. We solve explicitly the radial equations for the uniform magnetic field inside a solenoid of a finite radius and consider in detail the scattering of scalar and Dirac particles in this field. For particles with low energy the scattering cross section coincides with the Aharonov-Bohm scattering cross section. We work out the first order corrections to this result caused by the fact that the solenoid radius is finite. At high energies we obtain the classical result for the scattering cross section.Comment: LaTeX file, 17 page

    Pair creation by a photon in a strong magnetic field

    Get PDF
    The process of pair creation by a photon in a strong magnetic field is investigated basing on the polarization operator in the field. The total probability of the process is found in a relatively simple form. The probability exhibits a "saw-tooth" pattern because of divergences arising when the electron and positron are created at threshold of the Landau energy levels. The pattern will be washed out at averaging over any smooth photon energy distribution. The new results are obtained in the scope of the quasiclassical approach: 1) in the case when the magnetic field BB0,(B0B \ll B_0, (B_0 is the critical field) the new formulation extends the photon energy interval to the case when the created particles are not ultrarelativistic; 2) the correction to the standard quasiclassical approximation is found showing the range of applicability of the approach at high photon energy as well. The very important conclusion is that for both cases BB0B \ll B_0 and BB0B \geq B_0 the results of the quasiclassical calculation are very close to averaged probabilities of exact theory in a very wide range of photon energies. The quasiclassical approximation is valid also for the energy distribution if the electron and positron are created on enough high levels.Comment: 21 pages, 6 figure

    Electron-positron pair production in the Aharonov-Bohm potential

    Full text link
    In the framework of QED we evaluate the cross section for electron-positron pair production by a single photon in the presence of the external Aharonov-Bohm potential in first order of perturbation theory. We analyse energy, angular and polarization distributions at different energy regimes: near the threshold and at high photon energies.Comment: LaTeX file, 13 page

    The Nature of the Elongated Form of Diamond Crystals From Urals Placers

    Get PDF
    The article presents the results of a study of the internal structure of highly elongated diamond crystals from placers in the Krasnovishersky district of the Urals. Very elongated crystals are found within diamond-bearing placer with unrevealed primary sources. Determining the conditions of such crystals formation can help one to determine the primary deposits type. There are three hypotheses for the formation of the elongated shape of such crystals: 1) crys- tals initially elongated along the (strongly distorted octahedra); 2) individual crystals of columnar aggregates; 3) elongated crystals fragments. To study the internal structure, we selected three most elongated individuals of the 155 crystals samples. The study of the internal structure of selected crystals with the usage of photoluminescent (PL) tomography, cathodoluminescence (CL), and optical microscopy has shown that these samples are fragments of lar- ger single crystals. CL imaging allowed to determine slip lines within the crystal's volume. The recorded PL spectra show the 912, 946, and 986 nm peaks, which are characteristic of crystals with plastic deformation. The revealed fea- tures are indicators of plastic deformation accompanying the destruction of the crystals. The significant dissolution following the destruction of the crystals led to the rounding of the vertices and edges of their fragments. Apparently, most of the very elongated crystals from placers with unknown sources are also highly dissolved isometric crystal fragments. The obtained results have shown that the deformation and dissolution of diamond crystals are related events characteristic of diamonds from hitherto undetected, but highly productive primary deposits
    corecore