41 research outputs found

    Sums of hermitian squares and the BMV conjecture

    Full text link
    Recently Lieb and Seiringer showed that the Bessis-Moussa-Villani conjecture from quantum physics can be restated in the following purely algebraic way: The sum of all words in two positive semidefinite matrices where the number of each of the two letters is fixed is always a matrix with nonnegative trace. We show that this statement holds if the words are of length at most 13. This has previously been known only up to length 7. In our proof, we establish a connection to sums of hermitian squares of polynomials in noncommuting variables and to semidefinite programming. As a by-product we obtain an example of a real polynomial in two noncommuting variables having nonnegative trace on all symmetric matrices of the same size, yet not being a sum of hermitian squares and commutators.Comment: 21 pages; minor changes; a companion Mathematica notebook is now available in the source fil

    The matricial relaxation of a linear matrix inequality

    Full text link
    Given linear matrix inequalities (LMIs) L_1 and L_2, it is natural to ask: (Q1) when does one dominate the other, that is, does L_1(X) PsD imply L_2(X) PsD? (Q2) when do they have the same solution set? Such questions can be NP-hard. This paper describes a natural relaxation of an LMI, based on substituting matrices for the variables x_j. With this relaxation, the domination questions (Q1) and (Q2) have elegant answers, indeed reduce to constructible semidefinite programs. Assume there is an X such that L_1(X) and L_2(X) are both PD, and suppose the positivity domain of L_1 is bounded. For our "matrix variable" relaxation a positive answer to (Q1) is equivalent to the existence of matrices V_j such that L_2(x)=V_1^* L_1(x) V_1 + ... + V_k^* L_1(x) V_k. As for (Q2) we show that, up to redundancy, L_1 and L_2 are unitarily equivalent. Such algebraic certificates are typically called Positivstellensaetze and the above are examples of such for linear polynomials. The paper goes on to derive a cleaner and more powerful Putinar-type Positivstellensatz for polynomials positive on a bounded set of the form {X | L(X) PsD}. An observation at the core of the paper is that the relaxed LMI domination problem is equivalent to a classical problem. Namely, the problem of determining if a linear map from a subspace of matrices to a matrix algebra is "completely positive".Comment: v1: 34 pages, v2: 41 pages; supplementary material is available in the source file, or see http://srag.fmf.uni-lj.si

    Ein gekoppeltes Atmosphäre-Ozean-Modell für das Ostsee-Einzugsgebiet

    Get PDF
    textabstractWe show that ConnesĘĽ embedding conjecture (CEC) is equivalent to a real version of the same (RCEC). Moreover, we show that RCEC is equivalent to a real, purely algebraic statement concerning trace positive polynomials. This purely algebraic reformulation of CEC had previously been given in both a real and a complex version in a paper of the last two authors. The second author discovered a gap in this earlier proof of the equivalence of CEC to the real algebraic reformulation (the proof of the complex algebraic reformulation being correct). In this note, we show that this gap can be filled with help of the theory of real von Neumann algebras

    An exact duality theory for semidefinite programming based on sums of squares

    Full text link
    Farkas' lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A linear matrix inequality is infeasible if and only if -1 lies in the quadratic module associated to it. We also present a new exact duality theory for semidefinite programming, motivated by the real radical and sums of squares certificates from real algebraic geometry.Comment: arXiv admin note: substantial text overlap with arXiv:1108.593

    A local-global principle for linear dependence of noncommutative polynomials

    Full text link
    A set of polynomials in noncommuting variables is called locally linearly dependent if their evaluations at tuples of matrices are always linearly dependent. By a theorem of Camino, Helton, Skelton and Ye, a finite locally linearly dependent set of polynomials is linearly dependent. In this short note an alternative proof based on the theory of polynomial identities is given. The method of the proof yields generalizations to directional local linear dependence and evaluations in general algebras over fields of arbitrary characteristic. A main feature of the proof is that it makes it possible to deduce bounds on the size of the matrices where the (directional) local linear dependence needs to be tested in order to establish linear dependence.Comment: 8 page

    Three Centuries of Macro-Economic Statistics

    Full text link

    Addendum to “Connesʼ embedding conjecture and sums of hermitian squares” [Adv. Math. 217 (4) (2008) 1816–1837]

    No full text
    We show that ConnesĘĽ embedding conjecture (CEC) is equivalent to a real version of the same (RCEC). Moreover, we show that RCEC is equivalent to a real, purely algebraic statement concerning trace positive polynomials. This purely algebraic reformulation of CEC had previously been given in both a real and a complex version in a paper of the last two authors. The second author discovered a gap in this earlier proof of the equivalence of CEC to the real algebraic reformulation (the proof of the complex algebraic reformulation being correct). In this note, we show that this gap can be filled with help of the theory of real von Neumann algebras
    corecore