36 research outputs found
Gilles de la Tourette's symptoms induced by L-Dopa
Gilles de la Tourette's and Benedek's symptoms were twice released by L-dopa in a patient suffering from the sequelae of a contusio cerebri. Attendant circumstances of the case offer a functional-neuronal explanation fitting the rules of neuronal denervation and postdenervation supersensitivity according to Cannon's law. The view of a somatogenesis of Gilles de la Tourette's syndrome is supported.S. Afr. Med. J., 48, 1379 (1974)
In middle-aged and old obese patients, training intervention reduces leptin level: A meta-analysis
BACKGROUND: Leptin is one of the major adipokines in obesity that indicates the severity of fat accumulation. It is also an important etiological factor of consequent cardiometabolic and autoimmune disorders. Aging has been demonstrated to aggravate obesity and to induce leptin resistance and hyperleptinemia. Hyperleptinemia, on the other hand, may promote the development of age-related abnormalities. While major weight loss has been demonstrated to ameliorate hyperleptinemia, obese people show a poor tendency to achieve lasting success in this field. The question arises whether training intervention per se is able to reduce the level of this adipokine. OBJECTIVES: We aimed to review the literature on the effects of training intervention on peripheral leptin level in obesity during aging, in order to evaluate the independent efficacy of this method. In the studies that were included in our analysis, changes of adiponectin levels (when present) were also evaluated. DATA SOURCES: 3481 records were identified through searching of PubMed, Embase and Cochrane Library Database. Altogether 19 articles were suitable for analyses. STUDY ELIGIBILITY CRITERIA: Empirical research papers were eligible provided that they reported data of middle-aged or older (above 45 years of age) overweight or obese (body mass index above 25) individuals and included physical training intervention or at least fitness status of groups together with corresponding blood leptin values. STATISTICAL METHODS: We used random effect models in each of the meta-analyses calculating with the DerSimonian and Laird weighting methods. I-squared indicator and Q test were performed to assess heterogeneity. To assess publication bias Egger's test was applied. In case of significant publication bias, the Duval and Tweedie's trim and fill algorithm was used. RESULTS: Training intervention leads to a decrease in leptin level of middle-aged or older, overweight or obese male and female groups, even without major weight loss, indicated by unchanged serum adiponectin levels. Resistance training appears to be more efficient in reducing blood leptin level than aerobic training alone. CONCLUSIONS: Physical training, especially resistance training successfully reduces hyperleptinemia even without diet or major weight loss
A Duplication CNV That Conveys Traits Reciprocal to Metabolic Syndrome and Protects against Diet-Induced Obesity in Mice and Men
The functional contribution of CNV to human biology and disease pathophysiology has undergone limited exploration. Recent observations in humans indicate a tentative link between CNV and weight regulation. Smith-Magenis syndrome (SMS), manifesting obesity and hypercholesterolemia, results from a deletion CNV at 17p11.2, but is sometimes due to haploinsufficiency of a single gene, RAI1. The reciprocal duplication in 17p11.2 causes Potocki-Lupski syndrome (PTLS). We previously constructed mouse strains with a deletion, Df(11)17, or duplication, Dp(11)17, of the mouse genomic interval syntenic to the SMS/PTLS region. We demonstrate that Dp(11)17 is obesity-opposing; it conveys a highly penetrant, strain-independent phenotype of reduced weight, leaner body composition, lower TC/LDL, and increased insulin sensitivity that is not due to alteration in food intake or activity level. When fed with a high-fat diet, Dp(11)17/+ mice display much less weight gain and metabolic change than WT mice, demonstrating that the Dp(11)17 CNV protects against metabolic syndrome. Reciprocally, Df(11)17/+ mice with the deletion CNV have increased weight, higher fat content, decreased HDL, and reduced insulin sensitivity, manifesting a bona fide metabolic syndrome. These observations in the deficiency animal model are supported by human data from 76 SMS subjects. Further, studies on knockout/transgenic mice showed that the metabolic consequences of Dp(11)17 and Df(11)17 CNVs are not only due to dosage alterations of Rai1, the predominant dosage-sensitive gene for SMS and likely also PTLS. Our experiments in chromosome-engineered mouse CNV models for human genomic disorders demonstrate that a CNV can be causative for weight/metabolic phenotypes. Furthermore, we explored the biology underlying the contribution of CNV to the physiology of weight control and energy metabolism. The high penetrance, strain independence, and resistance to dietary influences associated with the CNVs in this study are features distinct from most SNP–associated metabolic traits and further highlight the potential importance of CNV in the etiology of both obesity and MetS as well as in the protection from these traits
Circulating Levels of Adiponectin, Leptin, Fetuin-A and Retinol-Binding Protein in Patients with Tuberculosis: Markers of Metabolism and Inflammation
BACKGROUND: Wasting is known as a prominent feature of tuberculosis (TB). To monitor the disease state, markers of metabolism and inflammation are potentially useful. We thus analyzed two major adipokines, adiponectin and leptin, and two other metabolic markers, fetuin-A and retinol-binding protein 4 (RBP4). METHODS: The plasma levels of these markers were measured using enzyme-linked immunosorbent assays in 84 apparently healthy individuals (=no-symptom group) and 46 patients with active pulmonary TB around the time of treatment, including at the midpoint evaluation (=active-disease group) and compared them with body mass index (BMI), C-reactive protein (CRP), chest radiographs and TB-antigen specific response by interferon-γ release assay (IGRA). RESULTS: In the no-symptom group, adiponectin and leptin showed negative and positive correlation with BMI respectively. In the active-disease group, at the time of diagnosis, leptin, fetuin-A and RBP4 levels were lower than in the no-symptom group [adjusted means 2.01 versus 4.50 ng/ml, P<0.0001; 185.58 versus 252.27 µg/ml, P<0.0001; 23.88 versus 43.79 µg/ml, P<0.0001, respectively]. High adiponectin and low leptin levels were associated with large infiltrates on chest radiographs even after adjustment for BMI and other covariates (P=0.0033 and P=0.0020). During treatment, adiponectin levels increased further and then decreased. Leptin levels remained low. Initial low levels of fetuin-A and RBP4 almost returned to the normal reference range in concert with reduced CRP. CONCLUSIONS: Our data and recent literature suggest that low fat store and underlying inflammation may regulate these metabolic markers in TB in a different way. Decreased leptin, increased adiponectin, or this ratio may be a promising marker for severity of the disease independent of BMI. We should further investigate pathological roles of the balance between these adipokines