518 research outputs found

    Thermal conductivity and diffusion-mediated localization in Fe_{1-x}Cr_{x} Alloys

    Full text link
    We apply a new Kubo-Greenwood type formula combined with a generalized Feynman diagram- matic technique to report a first principles calculation of the thermal transport properties of disordered Fe_{1-x}Cr_{x} alloys. The diagrammatic approach simplifies the inclusion of disorder-induced scattering effects on the two particle correlation functions and hence renormalizes the heat current operator to calculate configuration averaged lattice thermal conductivity and diffusivity. The thermal conductivity K(T) in the present case shows an approximate quadratic T-dependence in the low temperature regime (T < 20 K), which subsequently rises smoothly to a T-independent saturated value at high T . A numerical estimate of mobility edge from the thermal diffusivity data yields the fraction of localized states. It is concluded that the complex disorder scattering processes, in force-constant dominated disorder alloys such as Fe-Cr, tend to localize the vibrational modes quite significantly.Comment: 5 pages, 5 figure

    Tracer diffusion inside fibrinogen layers

    Full text link
    We investigate the obstructed motion of tracer (test) particles in crowded environments by carrying simulations of two-dimensional Gaussian random walk in model fibrinogen monolayers of different orientational ordering. The fibrinogen molecules are significantly anisotropic and therefore they can form structures where orientational ordering, similar to the one observed in nematic liquid crystals, appears. The work focuses on the dependence between level of the orientational order (degree of environmental crowding) of fibrinogen molecules inside a layer and non-Fickian character of the diffusion process of spherical tracer particles moving within the domain. It is shown that in general particles motion is subdiffusive and strongly anisotropic, and its characteristic features significantly change with the orientational order parameter, concentration of fibrinogens and radius of a diffusing probe.Comment: 8 pages, 12 figure

    Generation and detection of very high frequency acoustic waves in solids Final report

    Get PDF
    Techniques for generation and detection of very high frequency acoustic waves in solid

    Thermoelectric properties of Co, Ir, and Os-Doped FeSi Alloys: Evidence for Strong Electron-Phonon Coupling

    Full text link
    The effects of various transition metal dopants on the electrical and thermal transport properties of Fe1-xMxSi alloys (M= Co, Ir, Os) are reported. The maximum thermoelectric figure of merit ZTmax is improved from 0.007 at 60 K for pure FeSi to ZT = 0.08 at 100 K for 4% Ir doping. A comparison of the thermal conductivity data among Os, Ir and Co doped alloys indicates strong electron-phonon coupling in this compound. Because of this interaction, the common approximation of dividing the total thermal conductivity into independent electronic and lattice components ({\kappa}Total = {\kappa}electronic + {\kappa}lattice) fails for these alloys. The effects of grain size on thermoelectric properties of Fe0.96Ir0.04Si alloys are also reported. The thermal conductivity can be lowered by about 50% with little or no effect on the electrical resistivity or Seebeck coefficient. This results in ZTmax = 0.125 at 100 K, still about a factor of five too low for solid-state refrigeration applications

    Effects of nano-void density, size, and spatial population on thermal conductivity: a case study of GaN crystal

    Full text link
    The thermal conductivity of a crystal is sensitive to the presence of surfaces and nanoscale defects. While this opens tremendous opportunities to tailor thermal conductivity, a true "phonon engineering" of nanocrystals for a specific electronic or thermoelectric application can only be achieved when the dependence of thermal conductivity on the defect density, size, and spatial population is understood and quantified. Unfortunately, experimental studies of effects of nanoscale defects are quite challenging. While molecular dynamics simulations are effective in calculating thermal conductivity, the defect density range that can be explored with feasible computing resources is unrealistically high. As a result, previous work has not generated a fully detailed understanding of the dependence of thermal conductivity on nanoscale defects. Using GaN as an example, we have combined physically-motivated analytical model and highly-converged large scale molecular dynamics simulations to study effects of defects on thermal conductivity. An analytical expression for thermal conductivity as a function of void density, size, and population has been derived and corroborated with the model, simulations, and experiments

    Towards the grain boundary phonon scattering problem: an evidence for a low-temperature crossover

    Full text link
    The problem of phonon scattering by grain boundaries is studied within the wedge disclination dipole (WDD) model. It is shown that a specific q-dependence of the phonon mean free path for biaxial WDD results in a low-temperature crossover of the thermal conductivity, κ\kappa. The obtained results allow to explain the experimentally observed deviation of κ\kappa from a T3T^3 dependence below 0.1K0.1K in LiFLiF and NaClNaCl.Comment: 4 pages, 2 figures, submitted to J.Phys.:Condens.Matte

    Heat transport in silicon from first principles calculations

    Full text link
    Using harmonic and anharmonic force constants extracted from density-functional calculations within a supercell, we have developed a relatively simple but general method to compute thermodynamic and thermal properties of any crystal. First, from the harmonic, cubic, and quartic force constants we construct a force field for molecular dynamics (MD). It is exact in the limit of small atomic displacements and thus does not suffer from inaccuracies inherent in semi-empirical potentials such as Stillinger-Weber's. By using the Green-Kubo (GK) formula and molecular dynamics simulations, we extract the bulk thermal conductivity. This method is accurate at high temperatures where three-phonon processes need to be included to higher orders, but may suffer from size scaling issues. Next, we use perturbation theory (Fermi Golden rule) to extract the phonon lifetimes and compute the thermal conductivity κ\kappa from the relaxation time approximation. This method is valid at most temperatures, but will overestimate κ\kappa at very high temperatures, where higher order processes neglected in our calculations, also contribute. As a test, these methods are applied to bulk crystalline silicon, and the results are compared and differences discussed in more detail. The presented methodology paves the way for a systematic approach to model heat transport in solids using multiscale modeling, in which the relaxation time due to anharmonic 3-phonon processes is calculated quantitatively, in addition to the usual harmonic properties such as phonon frequencies and group velocities. It also allows the construction of accurate bulk interatomic potentials database.Comment: appear in PRB (2011

    First-principles study of phonon linewidths in noble metals

    Full text link

    Enhancement of the Thermal Conductivity in gapped Quantum Spin Chains

    Full text link
    We study mechanism of magnetic energy transport, motivated by recent measurements of the thermal conductivity in low dimensional quantum magnets. We point out a possible mechanism of enhancement of the thermal conductivity in gapped magnetic system, where the magnetic energy transport plays a crucial role. This mechanism gives an interpretation for the recent experiment of CuGeO_3, where the thermal conductivity depends on the crystal direction.Comment: 4 pages, 2 figure
    corecore