16 research outputs found
Fulde-Ferrell-Larkin-Ovchinnikov State in the absence of a Magnetic Field
We propose that in a system with pocket Fermi surfaces, a pairing state with
a finite total momentum q_tot like the Fulde-Ferrell-Larkin-Ovchinnikov state
can be stabilized even without a magnetic field. When a pair is composed of
electrons on a pocket Fermi surface whose center is not located at Gamma point,
the pair inevitably has finite q_tot. To investigate this possibility, we
consider a two-orbital model on a square lattice that can realize pocket Fermi
surfaces and we apply fluctuation exchange approximation. Then, by changing the
electron number n per site, we indeed find that such superconducting states
with finite q_tot are stabilized when the system has pocket Fermi surfaces.Comment: 4 pages, 5 figure
Spin-triplet superconducting pairing due to local (Hund's rule, Dirac) exchange
We discuss general implications of the local spin-triplet pairing among
fermions induced by local ferromagnetic exchange, example of which is the
Hund's rule coupling. The quasiparticle energy and their wave function are
determined for the three principal phases with the gap, which is momentum
independent. We utilize the Bogolyubov-Nambu-De Gennes approach, which in the
case of triplet pairing in the two-band case leads to the four-components wave
function. Both gapless modes and those with an isotropic gap appear in the
quasiparticle spectrum. A striking analogy with the Dirac equation is briefly
explored. This type of pairing is relevant to relativistic fermions as well,
since it reflects the fundamental discrete symmetry-particle interchange. A
comparison with the local interband spin-singlet pairing is also made.Comment: 16 pages, LaTex, submitted to Phys. Rev.
Heavy Quasi-Particle in the Two-Orbital Hubbard Model
The two-orbital Hubbard model with the Hund coupling is investigated in a
metallic phase close to the Mott insulator. We calculate the one-particle
spectral function and the optical conductivity within dynamical mean field
theory, for which the effective impurity problem is solved by using the
non-crossing approximation. For a metallic system close to quarter filling, a
heavy quasi-particle band is formed by the Hubbard interaction, the effective
mass of which is not so sensitive to the orbital splitting and the Hund
coupling. In contrast, a heavy quasi-particle band near half filling disappears
in the presence of the orbital splitting, but is induced again by the
introduction of the Hund coupling, resulting in a different type of heavy
quasi-particles.Comment: 6page, 7eps figures, to appear in J. Phys. Soc. Jp
Phase diagram of orbital-selective Mott transitions at finite temperatures
Mott transitions in the two-orbital Hubbard model with different bandwidths
are investigated at finite temperatures. By means of the self-energy functional
approach, we discuss the stability of the intermediate phase with one orbital
localized and the other itinerant, which is caused by the orbital-selective
Mott transition (OSMT). It is shown that the OSMT realizes two different
coexistence regions at finite temperatures in accordance with the recent
results of Liebsch. We further find that the particularly interesting behavior
emerges around the special condition and J=0, which includes a new type
of the coexistence region with three distinct states. By systematically
changing the Hund coupling, we establish the global phase diagram to elucidate
the key role played by the Hund coupling on the Mott transitions.Comment: 4 pages, 6 figure
Stability of a metallic state in the two-orbital Hubbard model
Electron correlations in the two-orbital Hubbard model at half-filling are
investigated by combining dynamical mean field theory with the exact
diagonalization method. We systematically study how the interplay of the intra-
and inter-band Coulomb interactions, together with the Hund coupling, affects
the metal-insulator transition. It is found that if the intra- and inter-band
Coulomb interactions are nearly equal, the Fermi-liquid state is stabilized due
to orbital fluctuations up to fairly large interactions, while the system is
immediately driven to the Mott insulating phase away from this condition. The
effects of the isotropic and anisotropic Hund coupling are also addressed.Comment: 7 pages, 9 figure
Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping
In the present paper we propose a doubly orbitally degenerate narrow-band
model with correlated hopping. The peculiarity of the model is taking into
account the matrix element of electron-electron interaction which describes
intersite hoppings of electrons. In particular, this leads to the concentration
dependence of the effective hopping integral. The cases of the strong and weak
Hund's coupling are considered. By means of a generalized mean-field
approximation the single-particle Green function and quasiparticle energy
spectrum are calculated. Metal-insulator transition is studied in the model at
different integer values of the electron concentration. With the help of the
obtained energy spectrum we find energy gap width and criteria of
metal-insulator transition.Comment: minor revisions, published in Phys. Rev.
Metal-insulator transition in the two-orbital Hubbard model at fractional band fillings: Self-energy functional approach
We investigate the infinite-dimensional two-orbital Hubbard model at
arbitrary band fillings. By means of the self-energy functional approach, we
discuss the stability of the metallic state in the systems with same and
different bandwidths. It is found that the Mott insulating phases are realized
at commensurate band fillings. Furthermore, it is clarified that the orbital
selective Mott phase with one orbital localized and the other itinerant is
stabilized even at fractional band fillings in the system with different
bandwidths.Comment: 7 pages, 10 figure
Antiferromagnetism of almost localized fermions: Evolution from Slater-type to Mott-Hubbard gap
International audienceWe supplement (and critically overview) the existing extensive analysis of antiferromagnetic solution for the Hubbard model with a detailed discussion of two specific features, namely (i) the evolution of the magnetic (Slater) gap (here renormalized by the electronic correlations) into the Mott-Hubbard or atomic gap, and (ii) a rather weak renormalization of the effective mass by the correlations in the half-filled-band case, which contrasts with that for the paramagnetic case. The mass remains strongly enhanced in the non-half-filled-band case. We also stress the difference between magnetic and non-magnetic contributions to the gap. These results are discussed within the slave boson approach in the saddle-point approximation, in which there appears a non-linear staggered molecular field due to the electronic correlations that leads to the appearance of the magnetic gap. They reproduce correctly the ground-state energy in the limit of strong correlations. A brief comparison with the solution in the limit of infinite dimensions and the corresponding situation in the doubly-degenerate-band case with one electron per atom is also made. PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.)-75.10.Lp Band and itinerant models-75.50.Ee Antiferromagnetic