15 research outputs found

    Probing the affinity, selectivity and inhibition of ubiquitin-ubiquitin binding domain complexes by electrospray ionization mass spectrometry

    Get PDF
    This thesis describes the development and application of a rapid and sensitive electrospray ionization-mass spectrometry (ESI-MS) method to study the weak hydrophobic interactions seen in many Ub-Ub-binding domain (UBD) complexes. A range of UBDs has been screened against mono-Ub, di-Ub (Ub2) and tetra-Ub (Ub4). Affinities in the 2-200 J.lM range were found to be in excellent agreement with data obtained from other biophysical techniques. Insights into the UBD's preference for poly-Ub chain linkage and length are also provided by this methodology. Detection of a ternary complex involving Ub interacting simultaneously with two different UBDs demonstrated the co-existence of multisite interactions. A simple, clean and effective method for reducing charge states observed in ESI-MS without the use of any solution additives or instrumental modifications is also reported; with the charge reduction method ultimately promoting the investigation ofthe Ub-UBD interactions. Moreover, the development and application of a top-down proteomics approach to characterize the topology of an unanchored Ub dimer purified from rat skeletal muscle is also described in this thesis. This study has identified the topology of the Ub2 to be Lys48-linked. In addition, ESI-MS of endogenous Ub2 species has revealed the presence of cyclic Lys48-linked Ub2 and demonstrates for the first time that cyclisation of poly-Ub can also occur in vivo. Further to these studies, the inhibitory activity of small peptides against the complex formed by Ub with the ZnF domain of isopeptidase T (IsoT) is also investigated. Finally, the unusual effects of cation adduction upon the gas-phase conformation of three-helix bundle UBDs are revealed by ESI-IMS-MS and reported in this thesis

    Probing the affinity, selectivity and inhibition of ubiquitin-ubiquitin binding domain complexes by electrospray ionization mass spectrometry

    Get PDF
    This thesis describes the development and appilcation of a rapid and sensitive electrospray ionization-mass spectrometry (ESI-MS) method to study the weak hydrophobic interactions seen in many Ub-Ub-binding domain (UBO) complexes. A range of UBDs has been screened against mono-Ub, di-Ub (Ub2) and tetra-Ub (Ub4). Affinities in the 2-200 uM range were found to be in excellent agreement with data obtained from other biophysical techniques. Insights into the VBD's preference for poly-Ub chain linkage and length are also provided by this methodology. Detection of a ternary complex involving Ub interacting Simultaneously with two different UBDs demonstrated the co-existence of multisite interactions. A simple, clean and effective method for reducing charge states observed in ESI-MS without the use of any solution additives or instrumental modifications is also reported; with the charge reduction method ultimately promoting the investigation of the Ub.UBD interactions. Moreover, the development and application of a top- down proteomics approach to characterize the topology of an unanchored Ub dimer purified from rat skeletal muscle is also described in this thesis. This study has identified the topology of the Ub2 to be Lys48-linked. In addition. ESI-MS of endogenous Ub2 species has revealed the presence of cyclic Lys48-linked Ub2 and demonstrates for the first time that cyclisation of poly-Ub can also occur in vivo. Further to these studies, the inhibitory activity of small peptides against the complex formed by Ub with the ZnF domain of isopeptidase T (IsoT) is also investigated. Finally, the unusual effects of cation adduction upon the gas-phase conformation of three-helix bundle UBDs are revealed by ESI-IMS-MS and reported in this thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Pharmacological Stimulation of Phagocytosis Enhances Amyloid Plaque Clearance; Evidence from a Transgenic Mouse Model of ATTR Neuropathy

    No full text
    Hereditary ATTR V30M amyloidosis is a lethal autosomal dominant sensorimotor and autonomic neuropathy caused by deposition of aberrant transthyretin (TTR). Immunohistochemical examination of sural nerve biopsies in patients with amyloidotic neuropathy show co-aggregation of TTR with several proteins; including apolipoprotein E, serum amyloid P and components of the complement cascade. Complement activation and macrophages are increasingly recognized to play a crucial role in amyloidogenesis at the tissue bed level. In the current study we test the effect of two C5a receptor agonists and a C5a receptor antagonist (PMX53) on disease phenotype in ATTR V30M mice. Our results indicate that amyloid deposition was significantly reduced following treatment with the C5a receptor agonists, while treatment with the antagonist resulted in a significant increase of amyloid load. Administration of the C5a receptor agonists triggered increased recruitment of phagocytic cells resulting in clearance of amyloid deposits

    Biomarkers of systemic lupus erythematosus identified using mass spectrometry-based proteomics: a systematic review.

    No full text
    Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus erythematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying 241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing specific organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort, resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice

    Alport syndrome: Proteomic analysis identifies early molecular pathway alterations in Col4a3 knock out mice

    Get PDF
    AIM: Alport syndrome (AS) is the second most common hereditary kidney disease caused by mutations in collagen IV genes. Patients present with microhaematuria that progressively leads to proteinuria and end stage renal disease. Currently, no specific treatment exists for AS. Using mass spectrometry based proteomics, we aimed to detect early alterations in molecular pathways implicated in AS before the stage of overt proteinuria, which could be amenable to therapeutic intervention. METHODS: Kidneys were harvested from male Col4a3-/- knock out and sex and age-matched Col4a3+/+ wild-type mice at 4 weeks of age. Purified peptides were separated by liquid chromatography and analysed by high resolution mass spectrometry. The Cytoscape bioinformatics tool was used for function enrichment and pathway analysis. PPARα expression levels were evaluated by immunofluorescence and immunoblotting. RESULTS: Proteomic analysis identified 415 significantly differentially expressed proteins, which were mainly involved in metabolic and cellular processes, the extracellular matrix, binding and catalytic activity. Pathway enrichment analysis revealed among others, downregulation of the proteasome and PPAR pathways. PPARα protein expression levels were observed to be downregulated in Alport mice, supporting further the results of the discovery proteomics. CONCLUSION: This study provides additional evidence that alterations in proteins which participate in cellular metabolism and mitochondrial homeostasis in kidney cells are early events in the development of chronic kidney disease in AS. Of note is the dysregulation of the PPAR pathway, which is amenable to therapeutic intervention and provides a new potential target for therapy in AS

    Comparative analysis of affected and unaffected areas of systemic sclerosis skin biopsies by high-throughput proteomic approaches.

    No full text
    BACKGROUND: Pathogenesis and aetiology of systemic sclerosis (SSc) are currently unclear, thus rendering disease prognosis, diagnosis and treatment challenging. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis. METHODS: Biopsies were obtained from affected and unaffected skin areas of SSc patients. Samples were cryo-pulverised and proteins were extracted and analysed using mass spectrometry (MS) discovery analysis. Differentially expressed proteins were revealed after analysis with the Progenesis QIp software. Pathway analysis was performed using the Enrichr Web server. Using specific criteria, fifteen proteins were selected for further validation with targeted-MS analysis. RESULTS: Proteomic analysis led to the identification and quantification of approximately 2000 non-redundant proteins. Statistical analysis showed that 169 of these proteins were significantly differentially expressed in affected versus unaffected tissues. Pathway analyses showed that these proteins are involved in multiple pathways that are associated with autoimmune diseases (AIDs) and fibrosis. Fifteen of these proteins were further investigated using targeted-MS approaches, and five of them were confirmed to be significantly differentially expressed in SSc affected versus unaffected skin biopsies. CONCLUSION: Using MS-based proteomics analysis of human skin biopsies from patients with SSc, we identified a number of proteins and pathways that might be involved in SSc progression and pathogenesis. Fifteen of these proteins were further validated, and results suggest that five of them may serve as potential biomarkers for SSc

    Probing Affinity and Ubiquitin Linkage Selectivity of Ubiquitin-Binding Domains Using Mass Spectrometry

    No full text
    Non-covalent interactions between ubiquitin (Ub)-modified substrates and Ub-binding domains (UBDs) are fundamental to signal transduction by Ub receptor proteins. Poly-Ub chains, linked through isopeptide bonds between internal Lys residues and the C-terminus of Ub, can be assembled with varied topologies to mediate different cellular processes. We have developed and applied a rapid and sensitive electrospray ionization-mass spectrometry (ESI-MS) method to determine isopeptide linkage-selectivity and affinity of poly-Ub·UBD interactions. We demonstrate the technique using mono-Ub and poly-Ub complexes with a number of α-helical and zinc-finger (ZnF) UBDs from proteins with roles in neurodegenerative diseases and cancer. Affinities in the 2–200 μM range were determined to be in excellent agreement with data derived from other biophysical techniques, where available. Application of the methodology provided further insights into the poly-Ub linkage specificity of the hHR23A-UBA2 domain, confirming its role in Lys48-linked poly-Ub signaling. The ZnF UBP domain of isopeptidase-T showed no linkage specificity for poly-Ub chains, and the Rabex-5 MIU also exhibited little or no specificity. The discovery that a number of domains are able to bind cyclic Lys48 di-Ub with affinities similar to those for the acyclic form indicates that cyclic poly-Ub may be capable of playing a role in Ub-signaling. Detection of a ternary complex involving Ub interacting simultaneously with two different UBDs demonstrated the co-existence of multi-site interactions, opening the way for the study of crosstalk between individual Ub-signaling pathways

    Insights into the Molecular Composition of Endogenous Unanchored Polyubiquitin Chains

    No full text
    The diverse influences of ubiquitin, mediated by its post-translational covalent modification of other proteins, have been extensively investigated. However, more recently roles for unanchored (nonsubstrate linked) polyubiquitin chains have also been proposed. Here we describe the use of ubiquitin-binding domains to affinity purify endogenous unanchored polyubiquitin chains and their subsequent characterization by mass spectrometry (MS). Using the A20 Znf domain of the ubiquitin receptor ZNF216 we isolated a protein from skeletal muscle shown by a combination of nanoLC–MS and LC–MS/MS to represent an unmodified and unanchored K48-linked ubiquitin dimer. Selective purification of unanchored polyubiquitin chains using the Znf UBP (BUZ) domain of USP5/isopeptidase-T allowed the isolation of K48 and K11-linked ubiquitin dimers, as well as revealing longer chains containing as many as 15 ubiquitin moieties, which include the K48 linkage. Top-down nanoLC–MS/MS of the A20 Znf-purified ubiquitin dimer generated diagnostic ions consistent with the presence of the K48 linkage, illustrating for the first time the potential of this approach to probe connectivity within endogenous polyubiquitin modifications. As well as providing initial proteomic insights into the molecular composition of endogenous unanchored polyubiquitin chains, this work also represents the first definition of polyubiquitin chain length <i>in vivo</i>
    corecore