343 research outputs found

    Growth and Fecundity of Several Weed Species in Corn and Soybean

    Get PDF
    Do weeds that emerge later in the season justify additional control costs\u27? If crop yield is not reduced or few or no seeds arc added to the soil seed hank, then no control may he needed. Eight weed species were sown in corn (Zea mays L.) and soybean I Glycine max (L.) Mcrr.l (i) before crop emergence, (ii) at crop emergence, (iii) at V-1, and (iv) at V-2 stages of crop growth in 2002 and 2003. Weed seed was sown close to the crop row and thinned to 1.3 plants m 2‱ Weed growth and fecundity were influenced by species, time of planting, and year. Only barnyarclgrass (Echinochloa crus-galli L.), rcclroot pigwced (Amaranthus retniflexus L.), and vclvetlcaf (Abutilon theophrasti L.) survived to produce seed. Plants from the pre-emergence seeding had the largest canopy and produced the most seeds. Harnyardgrass had maximum canopy cover in early .July in corn and late .Inly in soybean hut only produced seed in corn. Rcclroot pigweecl and vclvctleaf had maximum canopy cover in late August or midSeptember, and some plants from most seeding elates survived and produced seed in both corn and soybean. However, plants that grew from seed sown at V-1 and V-2 crnp grnwth stages did not reduce yield or biomass of adjacent crop plants, had low fecundity, and may not warrant treatment. Control may be necessary, however, to prevent yield losses if weeds arc present at high densities or to prevent establishment of uncommon species

    Dielectric quantification of conductivity limitations due to nanofiller size in conductive powders and nanocomposites

    Get PDF
    Conducting submicron particles are well-suited as filler particles in non-conducting polymer matrices to obtain a conducting composite with a low percolation threshold. Going to nanometer-sized filler particles imposes a restriction to the conductivity of the composite, due to the reduction of the density of states involved in the hopping process between the particles, compared to its value within the crystallites. We show how those microscopic parameters that govern the charge-transport processes across many decades of length scales, can accurately and consistently be determined by a range of dielectric-spectroscopy techniques from a few Hz to infrared frequencies. The method, which is suited for a variety of systems with restricted geometries, is applied to densely packed 7-nm-sized tin-oxide crystalline particles with various degree of antimony doping and the quantitative results unambiguously show the role of the nanocrystal charging energy in limiting the hopping process.Comment: 6 pages, 4 figure

    Measurements of double-helicity asymmetries in inclusive J/ψJ/\psi production in longitudinally polarized p+pp+p collisions at s=510\sqrt{s}=510 GeV

    Full text link
    We report the double helicity asymmetry, ALLJ/ψA_{LL}^{J/\psi}, in inclusive J/ψJ/\psi production at forward rapidity as a function of transverse momentum pTp_T and rapidity ∣y∣|y|. The data analyzed were taken during s=510\sqrt{s}=510 GeV longitudinally polarized pp++pp collisions at the Relativistic Heavy Ion Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision energy, J/ψJ/\psi particles are predominantly produced through gluon-gluon scatterings, thus ALLJ/ψA_{LL}^{J/\psi} is sensitive to the gluon polarization inside the proton. We measured ALLJ/ψA_{LL}^{J/\psi} by detecting the decay daughter muon pairs ÎŒ+Ό−\mu^+ \mu^- within the PHENIX muon spectrometers in the rapidity range 1.2<∣y∣<2.21.2<|y|<2.2. In this kinematic range, we measured the ALLJ/ψA_{LL}^{J/\psi} to be 0.012±0.0100.012 \pm 0.010~(stat)~±\pm~0.0030.003(syst). The ALLJ/ψA_{LL}^{J/\psi} can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken xx: one at moderate range x≈0.05x \approx 0.05 where recent RHIC data of jet and π0\pi^0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-xx region x≈2×10−3x \approx 2\times 10^{-3}. Thus our new results could be used to further constrain the gluon polarization for x<0.05x< 0.05.Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version accepted for publication by Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    L\'evy-stable two-pion Bose-Einstein correlations in sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions

    Full text link
    We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter λ\lambda, the L\'evy index of stability α\alpha and the L\'evy length scale parameter RR as a function of average transverse mass of the pair mTm_T. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The λ(mT)\lambda(m_T) measurements indicate a decrease of the strength of the correlations at low mTm_T. The L\'evy length scale parameter R(mT)R(m_T) decreases with increasing mTm_T, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability α\alpha are found to be significantly lower than the Gaussian case of α=2\alpha=2, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version accepted for publication in Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    • 

    corecore