343 research outputs found
Growth and Fecundity of Several Weed Species in Corn and Soybean
Do weeds that emerge later in the season justify additional control costs\u27? If crop yield is not reduced or few or no seeds arc added to the soil seed hank, then no control may he needed. Eight weed species were sown in corn (Zea mays L.) and soybean I Glycine max (L.) Mcrr.l (i) before crop emergence, (ii) at crop emergence, (iii) at V-1, and (iv) at V-2 stages of crop growth in 2002 and 2003. Weed seed was sown close to the crop row and thinned to 1.3 plants m 2âą Weed growth and fecundity were influenced by species, time of planting, and year. Only barnyarclgrass (Echinochloa crus-galli L.), rcclroot pigwced (Amaranthus retniflexus L.), and vclvetlcaf (Abutilon theophrasti L.) survived to produce seed. Plants from the pre-emergence seeding had the largest canopy and produced the most seeds. Harnyardgrass had maximum canopy cover in early .July in corn and late .Inly in soybean hut only produced seed in corn. Rcclroot pigweecl and vclvctleaf had maximum canopy cover in late August or midSeptember, and some plants from most seeding elates survived and produced seed in both corn and soybean. However, plants that grew from seed sown at V-1 and V-2 crnp grnwth stages did not reduce yield or biomass of adjacent crop plants, had low fecundity, and may not warrant treatment. Control may be necessary, however, to prevent yield losses if weeds arc present at high densities or to prevent establishment of uncommon species
Dielectric quantification of conductivity limitations due to nanofiller size in conductive powders and nanocomposites
Conducting submicron particles are well-suited as filler particles in
non-conducting polymer matrices to obtain a conducting composite with a low
percolation threshold. Going to nanometer-sized filler particles imposes a
restriction to the conductivity of the composite, due to the reduction of the
density of states involved in the hopping process between the particles,
compared to its value within the crystallites. We show how those microscopic
parameters that govern the charge-transport processes across many decades of
length scales, can accurately and consistently be determined by a range of
dielectric-spectroscopy techniques from a few Hz to infrared frequencies. The
method, which is suited for a variety of systems with restricted geometries, is
applied to densely packed 7-nm-sized tin-oxide crystalline particles with
various degree of antimony doping and the quantitative results unambiguously
show the role of the nanocrystal charging energy in limiting the hopping
process.Comment: 6 pages, 4 figure
Measurements of double-helicity asymmetries in inclusive production in longitudinally polarized collisions at GeV
We report the double helicity asymmetry, , in inclusive
production at forward rapidity as a function of transverse momentum
and rapidity . The data analyzed were taken during
GeV longitudinally polarized collisions at the Relativistic Heavy Ion
Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision
energy, particles are predominantly produced through gluon-gluon
scatterings, thus is sensitive to the gluon polarization
inside the proton. We measured by detecting the decay
daughter muon pairs within the PHENIX muon spectrometers in the
rapidity range . In this kinematic range, we measured the
to be ~(stat)~~(syst). The
can be expressed to be proportional to the product of the
gluon polarization distributions at two distinct ranges of Bjorken : one at
moderate range where recent RHIC data of jet and
double helicity spin asymmetries have shown evidence for significant gluon
polarization, and the other one covering the poorly known small- region . Thus our new results could be used to further
constrain the gluon polarization for .Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version
accepted for publication by Phys. Rev. D. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
L\'evy-stable two-pion Bose-Einstein correlations in GeV AuAu collisions
We present a detailed measurement of charged two-pion correlation functions
in 0%-30% centrality GeV AuAu collisions by the
PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well
described by Bose-Einstein correlation functions stemming from L\'evy-stable
source distributions. Using a fine transverse momentum binning, we extract the
correlation strength parameter , the L\'evy index of stability
and the L\'evy length scale parameter as a function of average
transverse mass of the pair . We find that the positively and the
negatively charged pion pairs yield consistent results, and their correlation
functions are represented, within uncertainties, by the same L\'evy-stable
source functions. The measurements indicate a decrease of the
strength of the correlations at low . The L\'evy length scale parameter
decreases with increasing , following a hydrodynamically
predicted type of scaling behavior. The values of the L\'evy index of stability
are found to be significantly lower than the Gaussian case of
, but also significantly larger than the conjectured value that may
characterize the critical point of a second-order quark-hadron phase
transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version
accepted for publication in Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
- âŠ