2,694 research outputs found

    Bunching of fluxons by the Cherenkov radiation in Josephson multilayers

    Get PDF
    A single magnetic fluxon moving at a high velocity in a Josephson multilayer (e.g., high-temperature superconductor such as BSCCO) can emit electromagnetic waves (Cherenkov radiation), which leads to formation of novel stable dynamic states consisting of several bunched fluxons. We find such bunched states in numerical simulation in the simplest cases of two and three coupled junctions. At a given driving current, several different bunched states are stable and move at velocities that are higher than corresponding single-fluxon velocity. These and some of the more complex higher-order bunched states and transitions between them are investigated in detail.Comment: 6 pages + 6 Figures, to be published in Phys. Rev. B on July 1, 200

    Semifluxons in Superconductivity and Cold Atomic Gases

    Full text link
    Josephson junctions and junction arrays are well studied devices in superconductivity. With external magnetic fields one can modulate the phase in a long junction and create traveling, solitonic waves of magnetic flux, called fluxons. Today, it is also possible to device two different types of junctions: depending on the sign of the critical current density, they are called 0- or pi-junction. In turn, a 0-pi junction is formed by joining two of such junctions. As a result, one obtains a pinned Josephson vortex of fractional magnetic flux, at the 0-pi boundary. Here, we analyze this arrangement of superconducting junctions in the context of an atomic bosonic quantum gas, where two-state atoms in a double well trap are coupled in an analogous fashion. There, an all-optical 0-pi Josephson junction is created by the phase of a complex valued Rabi-frequency and we a derive a discrete four-mode model for this situation, which qualitatively resembles a semifluxon.Comment: 15 pages (Latex), 6 color figures (eps

    High efficiency deterministic Josephson Vortex Ratchet

    Full text link
    We investigate experimentally a Josephson vortex ratchet -- a fluxon in an asymmetric periodic potential driven by a deterministic force with zero time average. The highly asymmetric periodic potential is created in an underdamped annular long Josephson junction by means of a current injector providing efficiency of the device up to 91%. We measured the ratchet effect for driving forces with different spectral content. For monochromatic high-frequency drive the rectified voltage becomes quantized. At high driving frequencies we also observe chaos, sub-harmonic dynamics and voltage reversal due to the inertial mass of a fluxon.Comment: accepted by PRL. To see status click on http://134.2.74.170:88/cnt/cond-mat_0506754.htm

    Memory cell based on a φ\varphi Josephson junction

    Full text link
    The φ\varphi Josephson junction has a doubly degenerate ground state with the Josephson phases ±φ\pm\varphi. We demonstrate the use of such a φ\varphi Josephson junction as a memory cell (classical bit), where writing is done by applying a magnetic field and reading by applying a bias current. In the "store" state, the junction does not require any bias or magnetic field, but just needs to stay cooled for permanent storage of the logical bit. Straightforward integration with Rapid Single Flux Quantum logic is possible.Comment: to be published in AP

    Fluxon-semifluxon interaction in an annular long Josephson 0-pi-junction

    Full text link
    We investigate theoretically the interaction between integer and half-integer Josephson vortices (fluxons and semifluxons) in an annular Josephson junction. Semifluxons usually appear at the 0-π\pi-boundary where there is a π\pi-discontinuity of the Josephson phase. We study the simplest, but the most interesting case of one π\pi-discontinuity in a loop, which can be created only artificially. We show that measuring the current-voltage characteristic after injection of an integer fluxon, one can determine the polarity of a semifluxon. Depending on the relative polarity of fluxon and semifluxon the static configuration may be stable or unstable, but in the dynamic state both configurations are stable. We also calculate the depinning current of NN fluxons pinned by an arbitrary fractional vortex.Comment: 8pages, 6 figures, submitted to PR

    0-pi Josephson tunnel junctions with ferromagnetic barrier

    Full text link
    We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.Comment: submitted to PR
    • …
    corecore