1,183 research outputs found
Improving Christofides' Algorithm for the s-t Path TSP
We present a deterministic (1+sqrt(5))/2-approximation algorithm for the s-t
path TSP for an arbitrary metric. Given a symmetric metric cost on n vertices
including two prespecified endpoints, the problem is to find a shortest
Hamiltonian path between the two endpoints; Hoogeveen showed that the natural
variant of Christofides' algorithm is a 5/3-approximation algorithm for this
problem, and this asymptotically tight bound in fact has been the best
approximation ratio known until now. We modify this algorithm so that it
chooses the initial spanning tree based on an optimal solution to the Held-Karp
relaxation rather than a minimum spanning tree; we prove this simple but
crucial modification leads to an improved approximation ratio, surpassing the
20-year-old barrier set by the natural Christofides' algorithm variant. Our
algorithm also proves an upper bound of (1+sqrt(5))/2 on the integrality gap of
the path-variant Held-Karp relaxation. The techniques devised in this paper can
be applied to other optimization problems as well: these applications include
improved approximation algorithms and improved LP integrality gap upper bounds
for the prize-collecting s-t path problem and the unit-weight graphical metric
s-t path TSP.Comment: 31 pages, 5 figure
Spectral centrality measures in complex networks
Complex networks are characterized by heterogeneous distributions of the
degree of nodes, which produce a large diversification of the roles of the
nodes within the network. Several centrality measures have been introduced to
rank nodes based on their topological importance within a graph. Here we review
and compare centrality measures based on spectral properties of graph matrices.
We shall focus on PageRank, eigenvector centrality and the hub/authority scores
of HITS. We derive simple relations between the measures and the (in)degree of
the nodes, in some limits. We also compare the rankings obtained with different
centrality measures.Comment: 11 pages, 10 figures, 5 tables. Final version published in Physical
Review
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described
Memory detection 2.0: the first web-based memory detection test
There is accumulating evidence that reaction times (RTs) can be used to detect recognition of critical (e.g., crime) information. A limitation of this research base is its reliance upon small samples (average n = 24), and indications of publication bias. To advance RT-based memory detection, we report upon the development of the first web-based memory detection test. Participants in this research (Study1: n = 255; Study2: n = 262) tried to hide 2 high salient (birthday, country of origin) and 2 low salient (favourite colour, favourite animal) autobiographical details. RTs allowed to detect concealed autobiographical information, and this, as predicted, more successfully so than error rates, and for high salient than for low salient items. While much remains to be learned, memory detection 2.0 seems to offer an interesting new platform to efficiently and validly conduct RT-based memory detection research
RT-based memory detection: Item saliency effects in the single-probe and the multiple-probe protocol
Improved Bounds on Information Dissemination by Manhattan Random Waypoint Model
With the popularity of portable wireless devices it is important to model and
predict how information or contagions spread by natural human mobility -- for
understanding the spreading of deadly infectious diseases and for improving
delay tolerant communication schemes. Formally, we model this problem by
considering moving agents, where each agent initially carries a
\emph{distinct} bit of information. When two agents are at the same location or
in close proximity to one another, they share all their information with each
other. We would like to know the time it takes until all bits of information
reach all agents, called the \textit{flood time}, and how it depends on the way
agents move, the size and shape of the network and the number of agents moving
in the network.
We provide rigorous analysis for the \MRWP model (which takes paths with
minimum number of turns), a convenient model used previously to analyze mobile
agents, and find that with high probability the flood time is bounded by
, where agents move on an
grid. In addition to extensive simulations, we use a data set of
taxi trajectories to show that our method can successfully predict flood times
in both experimental settings and the real world.Comment: 10 pages, ACM SIGSPATIAL 2018, Seattle, U
- …