43 research outputs found

    Bernoulli potential in type-I and weak type-II supercoductors: II. Surface dipole

    Full text link
    The Budd-Vannimenus theorem is modified to apply to superconductors in the Meissner state. The obtained identity links the surface value of the electrostatic potential to the density of free energy at the surface which allows one to evaluate the electrostatic potential observed via the capacitive pickup without the explicit solution of the charge profile.Comment: 7 pages, 1 figur

    Coordination polymers utilizing N-oxide functionalised host ligands

    Get PDF
    Pyridyl functionalized host molecules are oxidized to their N-oxide analogues and form a series of coordination polymers and discrete complexes with transition metal cations. Complex {[Ag3(NMP)6(L1)2]·3(ClO4)}∞ where L1 = tris(isonicotinoyl-N-oxide)cyclotriguaiacylene, NMP = N-methylpyrrolidone, is a three-dimensional (3-D) 3,6-connected coordination polymer of pyrite-like (pyr) topology and features ligand unsupported argentophilic interactions, while two-dimensional (2-D) 3,6-connected coordination polymers with the rarely reported kagome dual (kgd) topology are found for [M(L1)2]2+ where M = Zn, Cd, Cu. Ligand L2 = tris(nicotinoyl-N-oxide)cyclotriguaiacylene forms a 2-D coordination polymer with 44 (sql) grid topology in complexes {[M(L2)2(DMF)2]·2ClO4·8(DMF)}∞ M = Cd or Cu, DMF = N,N′-dimethylformamide, and a double-linked chain structure in {[Co(L2)2(DMF)2]·2NO3·4(DMF)·H2O}∞, and both types of structure feature hand-shake self-inclusion motifs either within or between the polymers. 2-D coordination networks with 63 (hcb) topologies are found in complexes {[M(L3)(NO3)2]·2(DMF)}∞ (M = Cd, Zn) and {[Cu5(L3)2Cl10(NMP)4]}∞ where L3 = tris(2-pyridylmethyl)cyclotriguaiacylene, while [Ag2(L3)2(NMP)4]·2(BF4)·2(NMP) has a discrete dimeric structure which again shows hand-shake host–guest interactions supported by π–π stacking
    corecore