1,677 research outputs found

    Angular distribution of radiation by relativistic electrons in a thin crystal

    Full text link
    The results of theoretical investigation of angular distributions of radiation from a relativistic electron passing through a thin crystal at a small angle to the crystal axis are presented. The electron trajectories in crystal were simulated using the binary collision model which takes into account both coherent and incoherent effects at scattering. The angular distribution of radiation was calculated as a sum of radiation from each electron. It is shown that there are nontrivial angular distributions of the emitted photons, which is connected to the superposition of the coherent scattering of electrons by atomic rows (doughnut scattering effect) and the suppression of the radiation due to the multiple scattering effect (similar to the Landau-Pomeranchuk-Migdal effect in an amorphous matter). The orientation dependence of angular distribution of radiation is also analyzed

    Experimental status of quaternionic quantum mechanics

    Get PDF
    Analysis of the logical foundations of quantum mechanics indicates the possibility of constructing a theory using quaternionic Hilbert spaces. Whether this mathematical structure reflects reality is a matter for experiment to decide. We review the only direct search for quaternionic quantum mechanics yet carried out and outline a recent proposal by the present authors to look for quaternionic effects in correlated multi-particle systems. We set out how such experiments might distinguish between the several quaternionic models proposed in the literature.Comment: 8 pages, no figures, revtex. An update of paper appearing in journal reference given below, with minor amendments and latest additional reference

    Stochastic modeling of cargo transport by teams of molecular motors

    Full text link
    Many different types of cellular cargos are transported bidirectionally along microtubules by teams of molecular motors. The motion of this cargo-motors system has been experimentally characterized in vivo as processive with rather persistent directionality. Different theoretical approaches have been suggested in order to explore the origin of this kind of motion. An effective theoretical approach, introduced by M\"uller et al., describes the cargo dynamics as a tug-of-war between different kinds of motors. An alternative approach has been suggested recently by Kunwar et al., who considered the coupling between motor and cargo in more detail. Based on this framework we introduce a model considering single motor positions which we propagate in continuous time. Furthermore, we analyze the possible influence of the discrete time update schemes used in previous publications on the system's dynamic.Comment: Cenference proceedings - Traffic and Granular Flow 1

    Nuclear receptors and their role in epstein — barr virus induced b cell transformation

    No full text
    Epstein — Barr virus (EBV) is a lymphotropic virus that infects more than 90% of the human population, and targets B cells for infection. Infection of human B cells leads to the malignant transformation and eventual immortalization. In latency III infection six EBV-encoded nuclear antigens (EBNAs) and three latent membrane proteins (LMPs) are expressed in the transformed cells that can grow as a lymphoblastoid cell lines in vitro. These proteins hijack the normal B cell growth pathways by activating the constitutive growth promotion and external survival signals. We have determined a set of the nuclear receptors that are up- (and down-) regulated in the latency III infected cells at the mRNA level. In the present paper we discussed the possible role of these receptors in B cell transformation upon EBV infection based on the literature data

    Phase diagram and upper critical field of homogenously disordered epitaxial 3-dimensional NbN films

    Full text link
    We report the evolution of superconducting properties with disorder, in 3-dimensional homogeneously disordered epitaxial NbN thin films. The effective disorder in NbN is controlled from moderately clean limit down to Anderson metal-insulator transition by changing the deposition conditions. We propose a phase diagram for NbN in temperature-disorder plane. With increasing disorder we observe that as kFl-->1 the superconducting transition temperature (Tc) and minimum conductivity (sigma_0) go to zero. The phase diagram shows that in homogeneously disordered 3-D NbN films, the metal-insulator transition and the superconductor-insulator transition occur at a single quantum critical point at kFl~1.Comment: To appear in Journal of Superconductivity and Novel Magnetism (ICSM2010 proceedings

    Mesoscale magnetism at the grain boundaries in colossal magnetoresistive films

    Full text link
    We report the discovery of mesoscale regions with distinctive magnetic properties in epitaxial La1x_{1-x}Srx_{x}MnO3_{3} films which exhibit tunneling-like magnetoresistance across grain boundaries. By using temperature-dependent magnetic force microscopy we observe that the mesoscale regions are formed near the grain boundaries and have a different Curie temperature (up to 20 K {\it higher}) than the grain interiors. Our images provide direct evidence for previous speculations that the grain boundaries in thin films are not magnetically and electronically sharp interfaces. The size of the mesoscale regions varies with temperature and nature of the underlying defect.Comment: 4 pages of text, 4 figure

    Vacuum instability in external fields

    Full text link
    We study particles creation in arbitrary space-time dimensions by external electric fields, in particular, by fields, which are acting for a finite time. The time and dimensional analysis of the vacuum instability is presented. It is shown that the distributions of particles created by quasiconstant electric fields can be written in a form which has a thermal character and seems to be universal. Its application, for example, to the particles creation in external constant gravitational field reproduces the Hawking temperature exactly.Comment: 36 pages, LaTe

    Expression profile of nuclear receptors upon epstein — barr virus induced b cell transformation

    No full text
    Background: Infection of human B cells with Epstein—Barr virus (EBV) induces metabolic activation, morphological transformation, cell proliferation and eventual immortalization. Aim: To identify the nuclear receptors, which are the cellular interaction partners of EBNAs, that will help to elucidate the mechanism of B cell transformation. Methods: We have compared the nuclear receptor profile in the naïve and EBV-transformed B-lymphocytes, using TaqMan LDA microfluidic card technology. Results: Out of 48 nuclear receptor, 17 showed differential expression at the mRNA level. The expression of 5 genes was elevated in EBV-transformed cells, whereas 12 genes were downregulated in lymphoblastoid cells (LCLs). 7 genes were studied at the protein level; 2 genes were up regulated (Nr2F2 and RARA) and 4 genes were down regulated (ERB, NUR77, PPARG, and VDR) in LCLs. Conclusion: The nuclear receptor profiling on EBV infected B cells showed alterations of nuclear receptors expression at both mRNA and protein levels compared with non infected peripheral blood cells. Further analysis on a possible role of each nuclear receptor in EBV induced cell transformation should be performed

    A calculation of the QCD phase diagram at finite temperature, and baryon and isospin chemical potentials

    Full text link
    We study the phases of a two-flavor Nambu-Jona-Lasinio model at finite temperature TT, baryon and isospin chemical potentials: μB=(μu+μd)/2\mu_{B}=(\mu_{u}+\mu_{d})/2, μI=(μuμd)/2\mu_{I}=(\mu_{u}-\mu_{d})/2. This study completes a previous analysis where only small isospin chemical potentials μI\mu_{I} were consideredComment: 21 pages, 13 figures included, two more refernces adde

    New exact solution of Dirac-Coulomb equation with exact boundary condition

    Full text link
    It usually writes the boundary condition of the wave equation in the Coulomb field as a rough form without considering the size of the atomic nucleus. The rough expression brings on that the solutions of the Klein-Gordon equation and the Dirac equation with the Coulomb potential are divergent at the origin of the coordinates, also the virtual energies, when the nuclear charges number Z > 137, meaning the original solutions do not satisfy the conditions for determining solution. Any divergences of the wave functions also imply that the probability density of the meson or the electron would rapidly increase when they are closing to the atomic nucleus. What it predicts is not a truth that the atom in ground state would rapidly collapse to the neutron-like. We consider that the atomic nucleus has definite radius and write the exact boundary condition for the hydrogen and hydrogen-like atom, then newly solve the radial Dirac-Coulomb equation and obtain a new exact solution without any mathematical and physical difficulties. Unexpectedly, the K value constructed by Dirac is naturally written in the barrier width or the equivalent radius of the atomic nucleus in solving the Dirac equation with the exact boundary condition, and it is independent of the quantum energy. Without any divergent wave function and the virtual energies, we obtain a new formula of the energy levels that is different from the Dirac formula of the energy levels in the Coulomb field.Comment: 12 pages,no figure
    corecore