63,287 research outputs found

    Strongly Coupled Matter-Field and Non-Analytic Decay Rate of Dipole Molecules in a Waveguide

    Full text link
    The decay rate \gam of an excited dipole molecule inside a waveguide is evaluated for the strongly coupled matter-field case near a cutoff frequency \ome_c without using perturbation analysis. Due to the singularity in the density of photon states at the cutoff frequency, we find that \gam depends non-analytically on the coupling constant \ggg as 4/3\ggg^{4/3}. In contrast to the ordinary evaluation of \gam which relies on the Fermi golden rule (itself based on perturbation analysis), \gam has an upper bound and does not diverge at \ome_c even if we assume perfect conductance in the waveguide walls. As a result, again in contrast to the statement found in the literature, the speed of emitted light from the molecule does not vanish at \ome_c and is proportional to c2/3c\ggg^{2/3} which is on the order of 10310410^3 \sim 10^4 m/s for typical dipole molecules.Comment: 4 pages, 2 figure

    Recent ν\nus from IceCube

    Full text link
    IceCube is a 1 km3^3 neutrino detector now being built at the South Pole. Its 4800 optical modules will detect Cherenkov radiation from charged particles produced in neutrino interactions. IceCube will search for neutrinos of astrophysical origin, with energies from 100 GeV up to 101910^{19} eV. It will be able to separate νe\nu_e, νμ\nu_\mu and ντ\nu_\tau. In addition to detecting astrophysical neutrinos, IceCube will also search for neutrinos from WIMP annihilation in the Sun and the Earth, look for low-energy (10 MeV) neutrinos from supernovae, and search for a host of exotic signatures. With the associated IceTop surface air shower array, it will study cosmic-ray air showers. IceCube construction is now 50% complete. After presenting preliminary results from the partial detector, I will discuss IceCube's future plans.Comment: Invited talk presented at Neutrino 2008; 7 page

    Exact relativistic treatment of stationary counter-rotating dust disks III. Physical Properties

    Full text link
    This is the third in a series of papers on the construction of explicit solutions to the stationary axisymmetric Einstein equations which can be interpreted as counter-rotating disks of dust. We discuss the physical properties of a class of solutions to the Einstein equations for disks with constant angular velocity and constant relative density which was constructed in the first part. The metric for these spacetimes is given in terms of theta functions on a Riemann surface of genus 2. It is parameterized by two physical parameters, the central redshift and the relative density of the two counter-rotating streams in the disk. We discuss the dependence of the metric on these parameters using a combination of analytical and numerical methods. Interesting limiting cases are the Maclaurin disk in the Newtonian limit, the static limit which gives a solution of the Morgan and Morgan class and the limit of a disk without counter-rotation. We study the mass and the angular momentum of the spacetime. At the disk we discuss the energy-momentum tensor, i.e. the angular velocities of the dust streams and the energy density of the disk. The solutions have ergospheres in strongly relativistic situations. The ultrarelativistic limit of the solution in which the central redshift diverges is discussed in detail: In the case of two counter-rotating dust components in the disk, the solutions describe a disk with diverging central density but finite mass. In the case of a disk made up of one component, the exterior of the disks can be interpreted as the extreme Kerr solution.Comment: 30 pages, 20 figures; to appear in Phys. Rev.

    A Modified Version of Taylor's Hypothesis for Solar Probe Plus Observations

    Get PDF
    The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10R10 R_{\odot}. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor's "frozen turbulence" hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfv\'en speed, and Taylor's hypothesis in its usual form does not apply. In this paper, we show that, under certain assumptions, a modified version of Taylor's hypothesis can be recovered in the near-Sun region. We consider only the transverse, non-compressive component of the fluctuations at length scales exceeding the proton gyroradius, and we describe these fluctuations using an approximate theoretical framework developed by Heinemann and Olbert. We show that fluctuations propagating away from the Sun in the plasma frame obey a relation analogous to Taylor's hypothesis when Vsc,zV_{\rm sc,\perp} \gg z^- and z+zz^+ \gg z^-, where Vsc,V_{\rm sc,\perp} is the component of the spacecraft velocity perpendicular to the mean magnetic field and z+\bm{z}^+ (z\bm{z}^-) is the Elsasser variable corresponding to transverse, non-compressive fluctuations propagating away from (towards) the Sun in the plasma frame. Observations and simulations suggest that, in the near-Sun solar wind, the above inequalities are satisfied and z+\bm{z}^+ fluctuations account for most of the fluctuation energy. The modified form of Taylor's hypothesis that we derive may thus make it possible to characterize the spatial structure of the energetically dominant component of the turbulence encountered by SPP.Comment: 5 pages, 1 figure, accepted in ApJ Lette

    Analytical design and simulation evaluation of an approach flight director system for a jet STOL aircraft

    Get PDF
    A program was undertaken to develop design criteria and operational procedures for STOL transport aircraft. As part of that program, a series of flight tests shall be performed in an Augmentor Wing Jet STOL Aircraft. In preparation for the flight test programs, an analytical study was conducted to gain an understanding of the characteristics of the vehicle for manual control, to assess the relative merits of the variety of manual control techniques available with attitude and thrust vector controllers, and to determine what improvements can be made over manual control of the bare airframe by providing the pilot with suitable command guidance information and by augmentation of the bare airframe dynamics. The objective of the study is to apply closed-loop pilot/vehicle analysis techniques to the analysis of manual flight control of powered-lift STOL aircraft in the landing approach and to the design and experimental verification of an advanced flight director display

    Structural and mechanical effects of interstitial sinks

    Get PDF
    Changes in structure and mechanical properties due to loss of interstitials to reactive metal coatings studied in dispersion strengthened niobium alloy

    On the Conservation of Cross Helicity and Wave Action in Solar-Wind Models with Non-WKB Alfven Wave Reflection

    Get PDF
    The interaction between Alfven-wave turbulence and the background solar wind affects the cross helicity in two ways. Non-WKB reflection converts outward-propagating Alfven waves into inward-propagating Alfven waves and vice versa, and the turbulence transfers momentum to the background flow. When both effects are accounted for, the total cross helicity is conserved. In the special case that the background density and flow speed are independent of time, the equations of cross-helicity conservation and total-energy conservation can be combined to recover a well-known equation derived by Heinemann and Olbert that has been interpreted as a non-WKB generalization of wave-action conservation. This latter equation (in contrast to cross-helicity and energy conservation) does not hold when the background varies in time.Comment: 9 pages, 1 figure, in press at Ap

    Clusters and Fluctuations at Mean-Field Critical Points and Spinodals

    Full text link
    We show that the structure of the fluctuations close to spinodals and mean-field critical points is qualitatively different than the structure close to non-mean-field critical points. This difference has important implications for many areas including the formation of glasses in supercooled liquids. In particular, the divergence of the measured static structure function in near-mean-field systems close to the glass transition is suppressed relative to the mean-field prediction in systems for which a spatial symmetry is broken.Comment: 5 pages, 1 figur

    Approaching equilibrium and the distribution of clusters

    Full text link
    We investigate the approach to stable and metastable equilibrium in Ising models using a cluster representation. The distribution of nucleation times is determined using the Metropolis algorithm and the corresponding ϕ4\phi^{4} model using Langevin dynamics. We find that the nucleation rate is suppressed at early times even after global variables such as the magnetization and energy have apparently reached their time independent values. The mean number of clusters whose size is comparable to the size of the nucleating droplet becomes time independent at about the same time that the nucleation rate reaches its constant value. We also find subtle structural differences between the nucleating droplets formed before and after apparent metastable equilibrium has been established.Comment: 22 pages, 16 figure
    corecore