256 research outputs found

    Dry soils can intensify mesoscale convective systems

    Get PDF
    Soil moisture can feed back on rainfall through the impact of surface fluxes on the environment in which convection develops. The vast majority of previous research has focused on the initiation of convection, but in many regions of the world, the majority of rain comes from remotely triggered mesoscale convective systems (MCSs). Here we conduct a systematic observational analysis of soil moisture feedbacks on propagating MCSs anywhere in the world and show a strong positive impact of drier soils on convection within mature MCSs. From thousands of storms captured in satellite imagery over the Sahel, we find that convective cores within MCSs are favored on the downstream side of dry patches ≄200 km across. The effect is particularly strong during the afternoon–evening transition when convection reaches its diurnal peak in intensity and frequency, with dry soils accounting for an additional one in five convective cores. Dry soil patterns intensify MCSs through a combination of convergence, increased instability, and wind shear, all factors that strengthen organized convection. These favorable conditions tend to occur in the vicinity of a surface-induced anomalous displacement of the Sahelian dry line/intertropical discontinuity, suggesting a strong link between dry line dynamics and soil moisture state. Our results have important implications for nowcasting of severe weather in the Sahel and potentially in other MCS hotspot regions of the world

    Dry-to-Wet Soil Gradients Enhance Convection and Rainfall over Subtropical South America

    Full text link
    Soil moisture-precipitation (SM-PPT) feedbacks at the mesoscale represent a major challenge for numerical weather prediction, especially for subtropical regions that exhibit large variability in surface SM. How does surface heterogeneity, specifically mesoscale gradients in SM and land surface temperature (LST), affect convective initiation (CI) over South America? Using satellite data, we track nascent, daytime convective clouds and quantify the underlying antecedent (morning) surface heterogeneity. We find that convection initiates preferentially on the dry side of strong SM/LST boundaries with spatial scales of tens of kilometers. The strongest alongwind gradients in LST anomalies at 30 km length scale underlying the CI location occur during weak background low-level wind (<2.5m/s), high convective available potential energy (>1500J/kg) and low convective inhibition (<250J/kg) over sparse vegetation. At 100 km scale, strong gradients occur at the CI location during convectively unfavorable conditions and strong background flow. The location of PPT is strongly sensitive to the strength of the background flow. The wind profile during weak background flow inhibits propagation of convection away from the dry regions leading to negative SM-PPT feedback whereas strong background flow is related to longer lifecycle and rainfall hundreds of kilometers away from the CI location. Thus, the sign of the SM-PPT feedback is dependent on the background flow. This work presents the first observational evidence that CI over subtropical South America is associated with dry soil patches on the order of tens of kilometers. Convection-permitting numerical weather prediction models need to be examined for accurately capturing the effect of SM heterogeneity in initiating convection over such semi-arid regions.Comment: 42 pages, 14 figures, 3 tables. Manuscript under peer-revie

    Wavelet scale analysis of mesoscale convective systems for detecting deep convection from infrared imagery

    Get PDF
    Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long‐term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of −40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below −80°C. Furthermore, we present a new method based on 2‐D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below −80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone

    Seasonality and trends of drivers of mesoscale convective systems in southern West Africa

    Get PDF
    Mesoscale convective systems (MCSs) are the major source of extreme rainfall over land in the tropics and are expected to intensify with global warming. In the Sahel, changes in surface temperature gradients and associated changes in wind shear have been found to be important for MCS intensification in recent decades. Here we extend that analysis to southern West Africa (SWA) by combining 34 years of cloud-top temperatures with rainfall and reanalysis data. We identify clear trends in intense MCSs since 1983 and their associated atmospheric drivers. We also find a marked annual cycle in the drivers, linked to changes in the convective regime during the progression of the West African monsoon. Before the peak of the first rainy season, we identify a shear regime where increased temperature gradients play a crucial role for MCS intensity trends. From June onward, SWA moves into a less unstable, moist regime during which MCS trends are mainly linked to frequency increase and may be more influenced by total column water vapor. However, during both seasons we find that MCSs with the most intense convection occur in an environment with stronger wind shear, increased low-level humidity, and drier midlevels. Comparing the sensitivity of MCS intensity and peak rainfall to low-level moisture and wind shear conditions preceding events, we find a dominant role for wind shear. We conclude that MCS trends are directly linked to a strengthening of two distinct convective regimes that cause the seasonal change of SWA MCS characteristics. However, the convective environment that ultimately produces the most intense MCSs remains the same

    Evaluation of real-life outcome data of patients with spinal muscular atrophy treated with nusinersen in Switzerland.

    Get PDF
    Spinal muscular atrophy (SMA) is an autosomal recessive disorder causing progressive proximal muscular, respiratory, and bulbar weakness. We present outcome data on motor function, ventilation, nutrition, and language development of SMA patients treated with nusinersen in Switzerland. This multicenter, observational study included 44 patients. At treatment initiation, after 2 months and then every 4 months we assessed motor function with the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND), Hammersmith Functional Motor Scale expanded (HFMSE) and 6-Minute Walk Test (6MWT). At treatment initiation, patients were 0.1-44.6 years old, treatment duration ranged from 6 to 41 months. All 11 SMA type 1 children achieved higher CHOP-INTEND scores at the last assessment compared to treatment initiation, 4 acquired stable sitting. Six type 1 children were <18 months-old at treatment initiation. Two of them did not need ventilation or nutritional support at the last assessment; three had delayed language development and 3 articulation difficulties. 5/21 SMA type 2 patients achieved higher HFMSE scores. All ambulant type 3 patients showed a gain in the 6MWT. Nusinersen is an effective treatment, with gains in motor function occurring particularly in children and SMA type 1, but also in type 2 and 3, adolescents and adults

    Nowcasting convective activity for the Sahel: a simple probabilistic approach using real‐time and historical satellite data on cloud‐top temperature

    Get PDF
    Flash flooding from intense rainfall frequently results in major damage and loss of life across Africa. In the Sahel, automatic prediction and warning systems for these events, driven by Mesoscale Convective Systems (MCSs), are limited, and Numerical Weather Prediction (NWP) forecasts continue to have little skill. The ground observation network is also sparse, and very few operational meteorological radars exist to facilitate conventional nowcasting approaches. Focusing on the western Sahel, we present a novel approach for producing probabilistic nowcasts of convective activity out to six hours ahead, using the current location of observed convection. Convective parts of the MCS, associated with extreme and heavy precipitation, are identified from 16 years of Meteosat Second Generation thermal–infrared cloud-top temperature data, and an offline database of location-conditioned probabilities calculated. From this database, real-time nowcasts can be quickly produced with minimal calculation. The nowcasts give the probability of convection occurring within a square neighbourhood surrounding each grid point, accounting for the inherent unpredictability of convection at small scales. Compared to a climatological reference, formal verification approaches show the nowcasts to be skilful at predicting convective activity over the study region, for all times of day and out to the six-hour lead time considered. The nowcasts are also skilful at capturing extreme 24-hour rain gauge accumulations over Dakar, Senegal. The nowcast skill peaks in the afternoon, with a minimum in the evening. We find that the optimum neighbourhood size varies with lead time, from 10 km at the nowcast origin to around 100 km at a six-hour lead time. This simple and skilful nowcasting method could be highly valuable for operational warnings across West Africa and other regions with long-lived thunderstorms, and help to reduce the impacts from heavy rainfall and flooding

    Evaluation of real-life outcome data of patients with spinal muscular atrophy treated with nusinersen in Switzerland

    Full text link
    Spinal muscular atrophy (SMA) is an autosomal recessive disorder causing progressive proximal muscular, respiratory, and bulbar weakness. We present outcome data on motor function, ventilation, nutrition, and language development of SMA patients treated with nusinersen in Switzerland. This multicenter, observational study included 44 patients. At treatment initiation, after 2 months and then every 4 months we assessed motor function with the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND), Hammersmith Functional Motor Scale expanded (HFMSE) and 6-Minute Walk Test (6MWT). At treatment initiation, patients were 0.1-44.6 years old, treatment duration ranged from 6 to 41 months. All 11 SMA type 1 children achieved higher CHOP-INTEND scores at the last assessment compared to treatment initiation, 4 acquired stable sitting. Six type 1 children were <18 months-old at treatment initiation. Two of them did not need ventilation or nutritional support at the last assessment; three had delayed language development and 3 articulation difficulties. 5/21 SMA type 2 patients achieved higher HFMSE scores. All ambulant type 3 patients showed a gain in the 6MWT. Nusinersen is an effective treatment, with gains in motor function occurring particularly in children and SMA type 1, but also in type 2 and 3, adolescents and adults
    • 

    corecore