24 research outputs found

    The Insulin-Like Activity of Human Serum

    Get PDF

    Trastuzumab-Doxorubicin Conjugate Provides Enhanced Anti-Cancer Potency and Reduced Cardiotoxicity *

    Get PDF
    ABSTRACT Since trastuzumab monotherapy for treatment of breast cancer with HER2/ErbB2 over-expression has been shown to have limited efficacy, combined treatment of trastuzumab with chemotherapy is widely practiced in clinic. However, certain combination treatments of trastuzumab and chemotherapy (i.e. doxorubicin) are not recommended due to high risk of cardiotoxicity. Antibody-drug conjugates (ADCs) offer selective delivery of cytotoxic agents into targeted cancer cells, thereby allowing for reduced general cellular cytotoxicity caused by chemotherapeutic agents through antibody mediated specific recognition of tumor antigens. In this study, we constructed a trastuzumab-doxorubicin conjugate (T-Dox) using a thioether linkage and characterized both biophysical stability and anti-cancer potency of the T-Dox using a panel of HER2 expressing cancer cell lines. The T-Dox conjugate showed significantly improved anti-cancer potency in comparison with trastuzumab. The results demonstrated for the first time that there were significant differences in the uptake of T-Dox among high HER2 expression cancer cells and higher T-Dox uptake also showed stronger anti-cancer potency. Similar to trastuzumab, T-Dox selectively bound to HER2 overexpressing cancer cells and low HER2 expression cells had no detectable uptake of T-Dox. Consistent to the uptake data, human cardiomyocyte cells had no detectable HER2 expression and T-Dox showed minimal cytotoxic effects. On the contrary, a treatment with combination of trastuzumab and doxorubicin showed severe cytotoxicity to human cardiomyocytes (>90% cell death after 3 day exposure). This study demonstrated that trastuzumab conjugated with doxorubicin (T-Dox) can provide valuable alternative to the combination treatment with doxorubicin and trastuzumab for high HER2 expressing cancer patients

    Storage Stability of Atheroglitatide, an Echogenic Liposomal Formulation of Pioglitazone Targeted to Advanced Atheroma with a Fibrin-Binding Peptide

    Get PDF
    We have conducted a stability study of a complex liposomal pharmaceutical product, Atheroglitatide (AGT), stored at three temperatures, 4, 24, and 37 °C, for up to six months. The six parameters measured were functions of liposomal integrity (size and number), drug payload (loading efficiency), targeting peptide integrity (conjugation efficiency and specific avidity), and echogenicity (ultrasound-dependent controlled drug release), which were considered most relevant to the product\u27s intended use. At 4 °C, liposome diameter trended upward, indicative of aggregation, while liposome number per mg lipid and echogenicity trended downward. At 24 °C, peptide conjugation efficiency (CE) and targeting efficiency (TE, specific avidity) trended downward. At 37 °C, CE and drug (pioglitazone) loading efficiency trended downward. At 4 °C, the intended storage temperature, echogenicity, and liposome size reached their practical tolerance limits at 6 months, fixing the product expiration at that point. Arrhenius analysis of targeting peptide CE and drug loading efficiency decay at the higher temperatures indicated complete stability of these characteristics at 4 °C. The results of this study underscore the storage stability challenges presented by complex nanopharmaceutical formulations

    Stabilizing Peri-Stent Restenosis Using a Novel Therapeutic Carrier

    Get PDF
    Late in-stent restenosis remains a significant problem. Bare-metal stents were implanted into peripheral arteries in miniature swine, followed by direct intra-arterial infusion of nitric oxide-loaded echogenic liposomes (ELIPs) and anti-intercellular adhesion molecule-1 conjugated ELIPs loaded with pioglitazone exposed to an endovascular catheter with an ultrasonic core. Ultrasound-facilitated delivery of ELIP formulations into stented peripheral arteries attenuated neointimal growth. Local atheroma-targeted, ultrasound-triggered delivery of nitric oxide and pioglitazone, an anti-inflammatory peroxisome proliferator-activated receptor-γ agonist, into stented arteries has the potential to stabilize stent-induced neointimal growth and obviate the need for long-term antiplatelet therapy

    Storage Stability of Atheroglitatide, an Echogenic Liposomal Formulation of Pioglitazone Targeted to Advanced Atheroma with a Fibrin-Binding Peptide

    No full text
    We have conducted a stability study of a complex liposomal pharmaceutical product, Atheroglitatide (AGT), stored at three temperatures, 4, 24, and 37 °C, for up to six months. The six parameters measured were functions of liposomal integrity (size and number), drug payload (loading efficiency), targeting peptide integrity (conjugation efficiency and specific avidity), and echogenicity (ultrasound-dependent controlled drug release), which were considered most relevant to the product’s intended use. At 4 °C, liposome diameter trended upward, indicative of aggregation, while liposome number per mg lipid and echogenicity trended downward. At 24 °C, peptide conjugation efficiency (CE) and targeting efficiency (TE, specific avidity) trended downward. At 37 °C, CE and drug (pioglitazone) loading efficiency trended downward. At 4 °C, the intended storage temperature, echogenicity, and liposome size reached their practical tolerance limits at 6 months, fixing the product expiration at that point. Arrhenius analysis of targeting peptide CE and drug loading efficiency decay at the higher temperatures indicated complete stability of these characteristics at 4 °C. The results of this study underscore the storage stability challenges presented by complex nanopharmaceutical formulations

    Oral delivery of xenon for cardiovascular protection

    Get PDF
    Cardiac hypertrophy often causes impairment of cardiac function. Xenon (Xe), a naturally occurring noble gas, is known to provide neurological and myocardial protection without side effects. The conventional method of Xe delivery by inhalation is not feasible on a chronic basis. We have developed an orally deliverable, effective Xe formulation for long-term administration. We employed 2-hydroxypropyl)-β-cyclodextrin (HPCD), which was dissolved in water to increase the Xe concentration in solution. The beneficial effects of long-term oral administration of Xe-enriched solutions on cardiovascular function were evaluated in vivo. HPCD increased Xe solubility from 0.22 mM to 0.67 mM (3.8-fold). Aged ApoE knockout mice fed high-fat diet for 6 weeks developed hypertension, and myocardial hypertrophy with impaired cardiac function. Oral Xe prevented this ischemic damage, preserving normal blood pressure, while maintaining normal left ventricular mass and wall thickness. This novel formulation allows for gastrointestinal delivery and cardiovascular stabilization
    corecore