7 research outputs found

    Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children's Oncology Group.

    Get PDF
    BackgroundNew prognostic markers are needed to identify patients with Ewing sarcoma (EWS) and osteosarcoma unlikely to benefit from standard therapy. We describe the incidence and association with outcome of circulating tumour DNA (ctDNA) using next-generation sequencing (NGS) assays.MethodsA NGS hybrid capture assay and an ultra-low-pass whole-genome sequencing assay were used to detect ctDNA in banked plasma from patients with EWS and osteosarcoma, respectively. Patients were coded as positive or negative for ctDNA and tested for association with clinical features and outcome.ResultsThe analytic cohort included 94 patients with EWS (82% from initial diagnosis) and 72 patients with primary localised osteosarcoma (100% from initial diagnosis). ctDNA was detectable in 53% and 57% of newly diagnosed patients with EWS and osteosarcoma, respectively. Among patients with newly diagnosed localised EWS, detectable ctDNA was associated with inferior 3-year event-free survival (48.6% vs. 82.1%; p = 0.006) and overall survival (79.8% vs. 92.6%; p = 0.01). In both EWS and osteosarcoma, risk of event and death increased with ctDNA levels.ConclusionsNGS assays agnostic of primary tumour sequencing results detect ctDNA in half of the plasma samples from patients with newly diagnosed EWS and osteosarcoma. Detectable ctDNA is associated with inferior outcomes

    Circulating Tumor DNA as a Biomarker in Patients With Stage III and IV Wilms Tumor: Analysis From a Children\u27s Oncology Group Trial, AREN0533

    No full text
    PURPOSE: The utility of circulating tumor DNA (ctDNA) analyses has not been established in the risk stratification of Wilms tumor (WT). We evaluated the detection of ctDNA and selected risk markers in the serum and urine of patients with WT and compared findings with those of matched diagnostic tumor samples. PATIENTS AND METHODS: Fifty of 395 children with stage III or IV WT enrolled on Children\u27s Oncology Group trial AREN0533 had banked pretreatment serum, urine, and tumor available. Next-generation sequencing was used to detect ctDNA. Copy-number changes in 1q, 16q, and 1p, and single-nucleotide variants in serum and urine were compared with tumor biopsy data. Event-free survival (EFS) was compared between patients with and without ctDNA detection. RESULTS: ctDNA was detected in the serum of 41/50 (82%) and in the urine in 13/50 (26%) patients. Agreement between serum ctDNA detection and tumor sequencing results was as follows: 77% for 1q gain, 88% for 16q deletions, and 70% for 1p deletions, with ĸ-coefficients of 0.56, 0.74, and 0.29, respectively. Sequencing also demonstrated that single-nucleotide variants detected in tumors could be identified in the ctDNA. There was a trend toward worse EFS in patients with ctDNA detected in the serum (4-year EFS 80% 100%, = .14). CONCLUSION: ctDNA demonstrates promise as an easily accessible prognostic biomarker with potential to detect tumor heterogeneity. The observed trend toward more favorable outcome in patients with undetectable ctDNA requires validation. ctDNA profiling should be further explored as a noninvasive diagnostic and prognostic tool in the risk-adapted treatment of patients with WT

    Circulating Tumor DNA Is Prognostic in Intermediate-Risk Rhabdomyosarcoma: A Report From the Children's Oncology Group

    No full text
    International audiencePURPOSE Novel biomarkers are needed to differentiate outcomes in intermediate-risk rhabdomyosarcoma (IR RMS). We sought to evaluate strategies for identifying circulating tumor DNA (ctDNA) in IR RMS and to determine whether ctDNA detection before therapy is associated with outcome. PATIENTS AND METHODS Pretreatment serum and tumor samples were available from 124 patients with newly diagnosed IR RMS from the Children's Oncology Group biorepository, including 75 patients with fusion-negative rhabdomyosarcoma (FN-RMS) and 49 with fusion-positive rhabdomyosarcoma (FP-RMS) disease. We used ultralow passage whole-genome sequencing to detect copy number alterations and a new custom sequencing assay, Rhabdo-Seq, to detect rearrangements and single-nucleotide variants. RESULTS We found that ultralow passage whole-genome sequencing was a method applicable to ctDNA detection in all patients with FN-RMS and that ctDNA was detectable in 13 of 75 serum samples (17%). However, the use of Rhabdo-Seq in FN-RMS samples also identified single-nucleotide variants, such as MYOD1 L122R , previously associated with prognosis. Identification of pathognomonic translocations between PAX3 or PAX7 and FOXO1 by Rhabdo-Seq was the best method for measuring ctDNA in FP-RMS and detected ctDNA in 27 of 49 cases (55%). Patients with FN-RMS with detectable ctDNA at diagnosis had significantly worse outcomes than patients without detectable ctDNA (event-free survival, 33.3% v 68.9%; P = .0028; overall survival, 33.3% v 83.2%; P < .0001) as did patients with FP-RMS (event-free survival, 37% v 70%; P = .045; overall survival, 39.2% v 75%; P = .023). In multivariable analysis, ctDNA was independently associated with worse prognosis in FN-RMS but not in the smaller FP-RMS cohort. CONCLUSION Our study demonstrates that baseline ctDNA detection is feasible and is prognostic in IR RMS

    Inflaming the Brain: CRPS a Model Disease to Understand Neuroimmune Interactions in Chronic Pain

    No full text

    A Second bibliography on semi-Markov processes

    No full text
    corecore