1,320 research outputs found
Cerebral differences in explicit and implicit emotional processing - An fMRI study
The processing of emotional facial expression is a major part of social communication and understanding. In addition to explicit processing, facial expressions are also processed rapidly and automatically in the absence of explicit awareness. We investigated 12 healthy subjects by presenting them with an implicit and explicit emotional paradigm. The subjects reacted significantly faster in implicit than in explicit trials but did not differ in their error ratio. For the implicit condition increased signals were observed in particular in the thalami, the hippocampi, the frontal inferior gyri and the right middle temporal region. The analysis of the explicit condition showed increased blood-oxygen-level-dependent signals especially in the caudate nucleus, the cingulum and the right prefrontal cortex. The direct comparison of these 2 different processes revealed increased activity for explicit trials in the inferior, superior and middle frontal gyri, the middle cingulum and left parietal regions. Additional signal increases were detected in occipital regions, the cerebellum, and the right angular and lingual gyrus. Our data partially confirm the hypothesis of different neural substrates for the processing of implicit and explicit emotional stimuli. Copyright (c) 2007 S. Karger AG, Basel
Electric-field-induced phase transition of <001> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals
oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were poled under
different electric fields, i.e. Epoling=4 kV/cm and Epoling=13 kV/cm. In
addition to the temperature-dependent dielectric constant measurement, X-ray
diffraction was also used to identify the poling-induced phase transitions.
Results showed that the phase transition significantly depends on the poling
intensity. A weaker field (Epoling=4 kV/cm) can overcome the effect of random
internal field to perform the phase transition from rhombohedral ferroelectric
state with short range ordering (microdomain) FESRO to rhombohedral
ferroelectric state with long range ordering (macrodomain) FElRO. But the
rhombohedral ferroelectric to tetragonal ferroelectric phase transition
originating from to polarization rotation can only be induced by a
stronger field (Epoling=13 kV/cm). The sample poled at Epoling=4 kV/cm showed
higher piezoelectric constant, d33>1500 pC/N, than the sample poled at
Epoling=13 kV/cm.Comment: 7 pages, 2 figure
Programming scale-free optics in disordered ferroelectrics
Using the history-dependence of a dipolar glass hosted in a
compositionally-disordered lithium-enriched potassium-tantalate-niobate
(KTN:Li) crystal, we demonstrate scale-free optical propagation at tunable
temperatures. The operating equilibration temperature is determined by previous
crystal spiralling in the temperature/cooling-rate phase-space
Models for the magnetic ac susceptibility of granular superferromagnetic CoFe/AlO
The magnetization and magnetic ac susceptibility, ,
of superferromagnetic systems are studied by numerical simulations. The
Cole-Cole plot, vs. , is used as a tool for classifying
magnetic systems by their dynamical behavior. The simulations of the
magnetization hysteresis and the ac susceptibility are performed with two
approaches for a driven domain wall in random media. The studies are motivated
by recent experimental results on the interacting nanoparticle system
CoFe/AlO showing superferromagnetic behavior. Its
Cole-Cole plot indicates domain wall motion dynamics similarly to a disordered
ferromagnet, including pinning and sliding motion. With our models we can
successfully reproduce the features found in the experimental Cole-Cole plots.Comment: 8 pages, 6 figure
St John's Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death
Hypericin, an extract from St John's Wort ( Hypericum perforatum L. ), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT Mel-1) caspase-dependent apoptotic modes of cell death, as well as a caspase-independent apoptotic mode that did not involve apoptosis-inducing factor (501 mel). Further research is needed to shed more light on these mechanisms
Dynamics of Domains in Diluted Antiferromagnets
We investigate the dynamics of two-dimensional site-diluted Ising
antiferromagnets. In an external magnetic field these highly disordered
magnetic systems have a domain structure which consists of fractal domains with
sizes on a broad range of length scales. We focus on the dynamics of these
systems during the relaxation from a long-range ordered initial state to the
disordered fractal-domain state after applying an external magnetic field. The
equilibrium state with applied field consists of fractal domains with a size
distribution which follows a power law with an exponential cut-off. The
dynamics of the system can be understood as a growth process of this
fractal-domain state in such a way that the equilibrium distribution of domains
develops during time. Following these ideas quantitatively we derive a simple
description of the time dependence of the order parameter. The agreement with
simulations is excellent.Comment: Revtex, 6 pages, 5 Postscript figure
- …