527 research outputs found

    Finite-Element Simulations of Light Propagation through Circular Subwavelength Apertures

    Full text link
    Light transmission through circular subwavelength apertures in metallic films with surrounding nanostructures is investigated numerically. Numerical results are obtained with a frequency-domain finite-element method. Convergence of the obtained observables to very low levels of numerical error is demonstrated. Very good agreement to experimental results from the literature is reached, and the utility of the method is demonstrated in the investigation of the influence of geometrical parameters on enhanced transmission through the apertures

    Design concepts for broadband high-efficiency DOEs

    Get PDF
    Several design-concepts are presented for so-called efficiency achromatized diffractive optical elements (EA-DOEs) possessing diffraction efficiency larger than 97% over a broad spectral range. We start with tracing two different methods for surface relief profiles well known from the literature: common depth and multilayer EA-DOEs. Successively we present the following new approaches together with design parameters and performance properties: 1) gradient-index EA DOEs, 2) sub-wavelength EA-DOEs, and 3) a so-called cut-and-paste strategy. All designs are based on scalar assumptions and certain necessary dispersion relations of two different materials. The scalar assumption is no real limitation as the minimum zone width of our main application, the correction of chromatic aberrations, is 50 -100 times the wavelength. From aforementioned relations, design parameters as profile heights are derived and the resulting diffraction efficiency can be deduced. Additionally it turns out that the necessary dispersion relation concerning the sub-wavelength EA-DOE is the same as for the common depth EA-DOE. Moreover, for the multilayer EA-DOE we were able to show that if the dispersion relations of the materials can be accurately described by a second order Cauchy series, the efficiency becomes generic and will be the same regardless of which materials are chosen. By proper choice of the materials, all types of EA-DOEs yield thicknesses of 10 - 30 µm which is more than ten times larger than for conventional DOEs. Due to the small refractive index difference of GRIN materials, such EA-DOEs exhibit thicknesses of 90 µm and more. Therefore, it is advisable to look for material combinations which yield thicknesses as small as possible

    Critical exponents at the ferromagnetic transition in tetrakis(diethylamino)ethylene-C60_{60} (TDAE-C60_{60})

    Full text link
    Critical exponents at the ferromagnetic transition were measured for the first time in an organic ferromagnetic material tetrakis(dimethylamino)ethylene fullerene[60] (TDAE-C60_{60}). From a complete magnetization-temperature-field data set near Tc=16.1±0.05,T_{c}=16.1\pm 0.05, we determine the susceptibility and magnetization critical exponents γ=1.22±0.02\gamma =1.22\pm 0.02 and β=0.75±0.03\beta =0.75 \pm 0.03 respectively, and the field vs. magnetization exponent at TcT_{c} of δ=2.28±0.14\delta =2.28\pm 0.14. Hyperscaling is found to be violated by Ωdd1/4\Omega \equiv d^{\prime}-d \approx -1/4, suggesting that the onset of ferromagnetism can be related to percolation of a particular contact configuration of C60_{60} molecular orientations.Comment: 5 pages, including 3 figures; to appear in Phys. Rev. Let

    Random Field Models for Relaxor Ferroelectric Behavior

    Full text link
    Heat bath Monte Carlo simulations have been used to study a four-state clock model with a type of random field on simple cubic lattices. The model has the standard nonrandom two-spin exchange term with coupling energy JJ and a random field which consists of adding an energy DD to one of the four spin states, chosen randomly at each site. This Ashkin-Teller-like model does not separate; the two random-field Ising model components are coupled. When D/J=3D / J = 3, the ground states of the model remain fully aligned. When D/J4D / J \ge 4, a different type of ground state is found, in which the occupation of two of the four spin states is close to 50%, and the other two are nearly absent. This means that one of the Ising components is almost completely ordered, while the other one has only short-range correlations. A large peak in the structure factor S(k)S (k) appears at small kk for temperatures well above the transition to long-range order, and the appearance of this peak is associated with slow, "glassy" dynamics. The phase transition into the state where one Ising component is long-range ordered appears to be first order, but the latent heat is very small.Comment: 7 pages + 12 eps figures, to appear in Phys Rev

    Coexistence of the Critical Slowing Down and Glassy Freezing in Relaxor Ferroelectrics

    Full text link
    We have developed a dynamical model for the dielectric response in relaxor ferroelectrics which explicitly takes into account the coexistence of the critical slowing down and glassy freezing. The application of the model to the experiment in PMN allowed for the reconstruction of the nonequilibrium spin glass state order parameter and its comparison with the results of recent NMR experiment (Blinc et al., Phys. Rev. Lett. 83, No. 2 (1999)). It is shown that the degree of the local freezing is rather small even at temperatures where the field-cooled permittivity exceeds the frequency dependent permittivity by an order of magnitude. This observation indicates the significant role of the critical slowing down (accompanying the glass freezing) in the system dynamics. Also the theory predicts an important interrelationship between the frequency dependent permittivity and the zero-field-cooled permittivity, which proved to be consistent with the experiment in PMN (A. Levstik et. al., Phys. Rev. B 57, 11204 (1998))

    Reverse dark current in organic photodetectors and the major role of traps as source of noise

    Get PDF
    Organic photodetectors have promising applications in low-cost imaging, health monitoring and near-infrared sensing. Recent research on organic photodetectors based on donor–acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 1013 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By modeling the dark current of several donor–acceptor systems, we reveal the interplay between traps and charge-transfer states as source of dark current and show that traps dominate the generation processes, thus being the main limiting factor of organic photodetectors detectivity

    Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?

    Get PDF
    Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel

    Development of Ferroelectric Order in Relaxor (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3

    Full text link
    The microstructure and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 (PMN) and its solid solution with PbTiO3 (PT), PMN-xPT, remain to be one of the most puzzling issues of solid state science. In the present work we have investigated the evolution of the phase symmetry in PMN-xPT ceramics as a function of temperature (20 K < T < 500 K) and composition (0 <= x <= 0.15) by means of high-resolution synchrotron x-ray diffraction. Structural analysis based on the experimental data reveals that the substitution of Ti^4+ for the complex B-site (Mg1/3Nb2/3)^4+ ions results in the development of a clean rhombohedral phase at a PT-concentration as low as 5%. The results provide some new insight into the development of the ferroelectric order in PMN-PT, which has been discussed in light of the kinetics of polar nanoregions and the physical models of the relaxor ferroelectrics to illustrate the structural evolution from a relaxor to a ferroelectric state.Comment: Revised version with updated references; 9 pages, 4 figures embedde

    Organic Agriculture

    Full text link
    Consumers are increasingly aware of the health- and safety-related implications of the food which they can buy in the market. At the same time, households have become more aware of their environmental responsibilities. Regarding the production of food, a crucial and multifunctional role is played by agriculture. The way vegetables, fruits, and other crops are grown and how livestock is raised has an impact on the environment and landscape. Operations performed by farmers, such as water management, can be dangerous for the soil and the whole ecosystem. Consequently, there is a search for natural ways of sustaining the impact of agriculture on the environment. In this context, one of the most popular ideas is organic agriculture. In the literature on the subject, there are many concepts that some authors consider to be synonymous even as others argue that these terms are not interchangeable. There is, for example, "organic agriculture," "alternative agriculture," "sustainable agriculture," "ecological agriculture," "biological agriculture," "niche farming," "community-supported agriculture," and "integrated pest management." Very often, techniques and products related to organic agriculture are described by marketing experts with the use of abbreviations such as "bio" and "eco." Products with such markings and labels are increasingly popular in stores that often give them separate shelves for their sale. Despite the higher price compared to conventional products, they are increasingly sought by consumers. The entry examines the various impacts of organic agriculture with a view to these trends

    Susceptibility and Percolation in 2D Random Field Ising Magnets

    Get PDF
    The ground state structure of the two-dimensional random field Ising magnet is studied using exact numerical calculations. First we show that the ferromagnetism, which exists for small system sizes, vanishes with a large excitation at a random field strength dependent length scale. This {\it break-up length scale} LbL_b scales exponentially with the squared random field, exp(A/Δ2)\exp(A/\Delta^2). By adding an external field HH we then study the susceptibility in the ground state. If L>LbL>L_b, domains melt continuously and the magnetization has a smooth behavior, independent of system size, and the susceptibility decays as L2L^{-2}. We define a random field strength dependent critical external field value ±Hc(Δ)\pm H_c(\Delta), for the up and down spins to form a percolation type of spanning cluster. The percolation transition is in the standard short-range correlated percolation universality class. The mass of the spanning cluster increases with decreasing Δ\Delta and the critical external field approaches zero for vanishing random field strength, implying the critical field scaling (for Gaussian disorder) Hc(ΔΔc)δH_c \sim (\Delta -\Delta_c)^\delta, where Δc=1.65±0.05\Delta_c = 1.65 \pm 0.05 and δ=2.05±0.10\delta=2.05\pm 0.10. Below Δc\Delta_c the systems should percolate even when H=0. This implies that even for H=0 above LbL_b the domains can be fractal at low random fields, such that the largest domain spans the system at low random field strength values and its mass has the fractal dimension of standard percolation Df=91/48D_f = 91/48. The structure of the spanning clusters is studied by defining {\it red clusters}, in analogy to the ``red sites'' of ordinary site-percolation. The size of red clusters defines an extra length scale, independent of LL.Comment: 17 pages, 28 figures, accepted for publication in Phys. Rev.
    corecore