267 research outputs found

    Identification of Candidate Genes Downstream of TLR4 Signaling after Ozone Exposure in Mice: A Role for Heat-Shock Protein 70

    Get PDF
    Background: Toll-like receptor 4 (TLR4) is involved in ozone (O3)-induced pulmonary hyperpermeability and inflammation, although the downstream signaling events are unknown

    Genetic Variation and Antioxidant Response Gene Expression in the Bronchial Airway Epithelium of Smokers at Risk for Lung Cancer

    Get PDF
    Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. As a first step in applying functional genomic analysis to population studies, we have examined the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment analysis showed that the NRF2-mediated, antioxidant response element (ARE)-regulated genes, were significantly lower in SC, when compared with expression levels in SNC. Importantly, we found that the expression of MAFG (a binding partner of NRF2) was correlated with the expression of ARE genes, suggesting MAFG levels may limit target gene induction. Bioinformatically we identified single nucleotide polymorphisms (SNPs) in putative ARE genes and to test the impact of genetic variation, we genotyped these putative regulatory SNPs and other tag SNPs in selected NRF2 pathway genes. Sequencing MAFG locus, we identified 30 novel SNPs and two were associated with either gene expression or lung cancer status among smokers. This work demonstrates an analysis approach that integrates bioinformatics pathway and transcription factor binding site analysis with genotype, gene expression and disease status to identify SNPs that may be associated with individual differences in gene expression and/or cancer status in smokers. These polymorphisms might ultimately contribute to lung cancer risk via their effect on the airway gene expression response to tobacco-smoke exposure.Intramural Research Program of the National Institute of Environmental Health Sciences; National Institutes of Health (Z01 ES100475, U01ES016035, R01CA124640

    Transcriptomic analysis of pathways regulated by toll-like receptor 4 in a murine model of chronic pulmonary inflammation and carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Therapeutic strategies exist for human pulmonary neoplasia, however due to the heterogeneity of the disease, most are not very effective. The innate immunity gene, toll-like receptor 4 (TLR4), protects against chronic pulmonary inflammation and tumorigenesis in mice, but the mechanism is unclear. This study was designed to identify TLR4-mediated gene expression pathways that may be used as prognostic indicators of susceptibility to lung tumorigenesis in mice and provide insight into the mechanism.</p> <p>Methods</p> <p>Whole lung mRNA was isolated from C.C3H-<it>Tlr4</it><sup><it>Lps</it>-<it>d </it></sup>(BALB<sup><it>Lps</it>-<it>d</it></sup>; <it>Tlr4 </it>mutant) and BALB/c (<it>Tlr4 </it>normal) mice following butylated hydroxytoluene (BHT)-treatment (four weekly ip. injections; 150-200 mg/kg/each; "promotion"). mRNA from micro-dissected tumors (adenomas) and adjacent uninvolved tissue from both strains were also compared 27 wks after a single carcinogen injection (3-methylcholanthrene (MCA), 10 μg/g; "control") or followed by BHT (6 weekly ip. injections; 125-200 mg/kg/each; "progression"). Bronchoalveolar lavage fluid was analyzed for inflammatory cell content and total protein determination, a marker of lung hyperpermeability; inflammation was also assessed using immunohistochemical staining for macrophages (F4/80) and lymphocytes (CD3) in mice bearing tumors (progression).</p> <p>Results</p> <p>During promotion, the majority of genes identified in the BALB<sup><it>Lps</it>-<it>d </it></sup>compared to BALB/c mice (P < 0.05) were involved in epithelial growth factor receptor (EGFR) signaling (e.g. epiregulin (<it>Ereg</it>)), secreted phosphoprotein 1(<it>Spp1</it>)), which can lead to cell growth and eventual tumor development. Inflammation was significantly higher in BALB<sup><it>Lps</it>-<it>d </it></sup>compared to BALB/c mice during progression, similar to the observed response during tumor promotion in these strains. Increases in genes involved in signaling through the EGFR pathway (e.g. <it>Ereg</it>, <it>Spp1</it>) were also observed during progression in addition to continued inflammation, chemotactic, and immune response gene expression in the BALB<sup><it>Lps</it>-<it>d </it></sup>versus BALB/c mice (<it>P </it>< 0.05), which appears to provide more favorable conditions for cell growth and tumor development. In support of these findings, the BALB/c mice also had significantly reduced expression of many immune response and inflammatory genes in both the tumors and uninvolved tissue.</p> <p>Conclusion</p> <p>This transcriptomic study determined the protective effect of TLR4 in lung carcinogenesis inhibition of multiple pathways including EGFR (e.g. <it>Ereg</it>), inflammatory response genes (e.g. <it>Cxcl5)</it>, chemotaxis (e.g. <it>Ccr1</it>) and other cell proliferation genes (e.g. <it>Arg1</it>, <it>Pthlh</it>). Future studies will determine the utility of these pathways as indicators of immune system deficiencies and tumorigenesis.</p

    Epigenome-wide association study of bronchopulmonary dysplasia in preterm infants: results from the discovery-BPD program

    Get PDF
    Background: Bronchopulmonary dysplasia (BPD) is a lung disease in premature infants caused by therapeutic oxygen supplemental and characterized by impaired pulmonary development which persists into later life. While advances in neonatal care have improved survival rates of premature infants, cases of BPD have been increasing with limited therapeutic options for prevention and treatment. This study was designed to explore the relationship between gestational age (GA), birth weight, and estimated blood cell-type composition in premature infants and to elucidate early epigenetic biomarkers associated with BPD.Methods: Cord blood DNA from preterm neonates that went on to develop BPD (n = 14) or not (non-BPD, n = 93) was applied to Illumina 450 K methylation arrays. Blood cell-type compositions were estimated using DNA methylation profiles. Multivariable robust regression analysis elucidated CpGs associated with BPD risk. cDNA microarray analysis of cord blood RNA identified differentially expressed genes in neonates who later developed BPD.Results: The development of BPD and the need for oxygen supplementation were strongly associated with GA (BPD, p < 1.0E−04; O2 supplementation, p < 1.0E−09) and birth weight (BPD, p < 1.0E−02; O2 supplementation, p < 1.0E−07). The estimated nucleated red blood cell (NRBC) percent was negatively associated with birth weight and GA, positively associated with hypomethylation of the tobacco smoke exposure biomarker cg05575921, and high-NRBC blood samplesdisplayed a hypomethylation profile. Epigenome-wide association study (EWAS) identified 38 (Bonferroni) and 275 (false discovery rate 1%) differentially methylated CpGs associated with BPD. BPD-associated CpGs in cord blood were enriched for lung maturation and hematopoiesis pathways. Stochastic epigenetic mutation burden at birth was significantly elevated among those who developed BPD (adjusted p = 0.02). Transcriptome changes in cord blood cells reflected cell cycle, development, and pulmonary disorder events in BPD.Conclusions: While results must be interpreted with caution because of the small size of this study, NRBC content strongly impacted DNA methylation profiles in preterm cord blood and EWAS analysis revealed potential insights into biological pathways involved in BPD pathogenesis.Fil: Wang, Xuting. National Institute of Environmental Health Sciences; Estados UnidosFil: Cho, Hye Youn. National Institute of Environmental Health Sciences; Estados UnidosFil: Campbell, Michelle R.. National Institute of Environmental Health Sciences; Estados UnidosFil: Panduri, Vijayalakshmi. National Institute of Environmental Health Sciences; Estados UnidosFil: Coviello, Silvina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Caballero, Mauricio Tomás. Fundación para la Investigación en Infectología Infantil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sambandan, Deepa. National Institute of Environmental Health Sciences; Estados UnidosFil: Kleeberger, Steven R.. National Institute of Environmental Health Sciences; Estados UnidosFil: Polack, Fernando Pedro. Fundación para la Investigación en Infectología Infantil; Argentina. Vanderbilt University; Estados UnidosFil: Ofman, Gaston. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Bell, Douglas A.. National Institute of Environmental Health Sciences; Estados Unido

    A Role for Immune Complexes in Enhanced Respiratory Syncytial Virus Disease

    Get PDF
    Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral pneumonia in infants and young children. Administration of a formalin inactivated vaccine against RSV to children in the 1960s resulted in increased morbidity and mortality in vaccine recipients who subsequently contracted RSV. This incident precluded development of subunit RSV vaccines for infants for over 30 years, because the mechanism of illness was never clarified. An RSV vaccine for infants is still not available

    Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants

    Get PDF
    AbstractBackgroundRespiratory syncytial virus (RSV) is the global leading cause of lower respiratory tract infection in infants. Nearly 30% of all infected infants develop severe disease including bronchiolitis, but susceptibility mechanisms remain unclear.MethodsWe infected a panel of 30 inbred strains of mice with RSV and measured changes in lung disease parameters 1 and 5days post-infection and they were used in genome-wide association (GWA) studies to identify quantitative trait loci (QTL) and susceptibility gene candidates.FindingsGWA identified QTLs for RSV disease phenotypes, and the innate immunity scavenger receptor Marco was a candidate susceptibility gene; targeted deletion of Marco worsened murine RSV disease. We characterized a human MARCO promoter SNP that caused loss of gene expression, increased in vitro cellular response to RSV infection, and associated with increased risk of disease severity in two independent populations of children infected with RSV.InterpretationTranslational integration of a genetic animal model and in vitro human studies identified a role for MARCO in human RSV disease severity. Because no RSV vaccines are approved for clinical use, genetic studies have implications for diagnosing individuals who are at risk for severe RSV disease, and disease prevention strategies (e.g. RSV antibodies)

    Comparative airway inflammatory response of normal volunteers to ozone and lipopolysaccharide challenge

    Get PDF
    Ozone and lipopolysaccharide (LPS) are environmental pollutants with adverse health effects noted in both healthy and asthmatic individuals. The authors and others have shown that inhalation of ozone and LPS both induce airway neutrophilia. Based on these similarities, the authors tested the hypothesis that common biological factors determine response to these two different agents. Fifteen healthy, nonasthmatic volunteers underwent a 0.4 part per million ozone exposure for 2 h while performing intermittent moderate exercise. These same subjects underwent an inhaled LPS challenge with 20,000 LPS units of Clinical Center Reference LPS, with a minimum of 1 month separating these two challenge sessions. Induced sputum was obtained 24 h before and 4–6 h after each exposure session. Sputum was assessed for total and differential cell counts and expression of cell surface proteins as measured by flow cytometry. Sputum supernatants were assayed for cytokine concentration. Both ozone and LPS challenge augmented sputum neutrophils and subjects’ responses were significantly correlated (R = .73) with each other. Ozone had greater overall influence on cell surface proteins by modifying both monocytes (CD14, human leukocyte antigen [HLA]-DR, CD11b) and macrophages (CD11b, HLA-DR) versus LPS where CD14 and HLA-DR were modified only on monocytes. However, LPS significantly increased interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, with no significant increases seen after ozone challenge. Ozone and LPS exposure in healthy volunteers induce similar neutrophil responses in the airways; however, downstream activation of innate immune responses differ, suggesting that oxidant versus bacterial air pollutants may be mediated by different mechanisms

    Late HIV Diagnosis and Determinants of Progression to AIDS or Death after HIV Diagnosis among Injection Drug Users, 33 US States, 1996–2004

    Get PDF
    BACKGROUND: The timeliness of HIV diagnosis and the initiation of antiretroviral treatment are major determinants of survival for HIV-infected people. Injection drug users (IDUs) are less likely than persons in other transmission categories to seek early HIV counseling, testing, and treatment. Our objective was to estimate the proportion of IDUs with a late HIV diagnosis (AIDS diagnosis within 12 months of HIV diagnosis) and determine the factors associated with disease progression after HIV diagnosis. METHODOLOGY/PRINCIPAL FINDINGS: Using data from 33 states with confidential name-based HIV reporting, we determined the proportion of IDUs aged >or=13 years who received a late HIV diagnosis during 1996-2004. We used standardized Kaplan-Meier survival methods to determine differences in time of progression from HIV to AIDS and death, by race/ethnicity, sex, age group, CD4(+) T-cell count, metropolitan residence, and diagnosis year. We compared the survival of IDUs with the survival of persons in other transmission categories. During 1996-2004, 42.2% (11,635) of 27,572 IDUs were diagnosed late. For IDUs, the risk for progression from HIV to AIDS 3 years after HIV diagnosis was greater for nonwhites, males and older persons. Three-year survival after HIV diagnosis was lower for IDU males (87.3%, 95% confidence interval (CI), 87.1-87.4) compared with males exposed through male-to-male sexual contact (91.6%, 95% CI, 91.6-91.7) and males exposed through high-risk heterosexual contact (HRHC) (91.9%, 95% CI, 91.8-91.9). Survival was also lower for IDU females (89.5%, 95% CI, 89.4-89.6) compared to HRHC females (93.3%, 95% CI, 93.3-93.4). CONCLUSIONS/SIGNIFICANCE: A substantial proportion of IDUs living with HIV received their HIV diagnosis late. To improve survival of IDUs, HIV prevention efforts must ensure early access to HIV testing and care, as well as encourage adherence to antiretroviral treatment to slow disease progression

    Assessing the Performance of a Computer-Based Policy Model of HIV and AIDS

    Get PDF
    BACKGROUND. Model-based analyses, conducted within a decision analytic framework, provide a systematic way to combine information about the natural history of disease and effectiveness of clinical management strategies with demographic and epidemiological characteristics of the population. Among the challenges with disease-specific modeling include the need to identify influential assumptions and to assess the face validity and internal consistency of the model. METHODS AND FINDINGS. We describe a series of exercises involved in adapting a computer-based simulation model of HIV disease to the Women's Interagency HIV Study (WIHS) cohort and assess model performance as we re-parameterized the model to address policy questions in the U.S. relevant to HIV-infected women using data from the WIHS. Empiric calibration targets included 24-month survival curves stratified by treatment status and CD4 cell count. The most influential assumptions in untreated women included chronic HIV-associated mortality following an opportunistic infection, and in treated women, the 'clinical effectiveness' of HAART and the ability of HAART to prevent HIV complications independent of virologic suppression. Good-fitting parameter sets required reductions in the clinical effectiveness of 1st and 2nd line HAART and improvements in 3rd and 4th line regimens. Projected rates of treatment regimen switching using the calibrated cohort-specific model closely approximated independent analyses published using data from the WIHS. CONCLUSIONS. The model demonstrated good internal consistency and face validity, and supported cohort heterogeneities that have been reported in the literature. Iterative assessment of model performance can provide information about the relative influence of uncertain assumptions and provide insight into heterogeneities within and between cohorts. Description of calibration exercises can enhance the transparency of disease-specific models.National Institute of Allergy and Infectious Diseases (R37 AI042006, K24 AI062476
    • …
    corecore