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Abstract

Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway
epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. As a first
step in applying functional genomic analysis to population studies, we have examined the relationship between gene
expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated
with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells
obtained at bronchoscopy from smokers who developed lung cancer (SC, n = 20), smokers without lung cancer (SNC,
n = 24), and never smokers (NS, n = 8). Functional enrichment analysis showed that the NRF2-mediated, antioxidant
response element (ARE)-regulated genes, were significantly lower in SC, when compared with expression levels in SNC.
Importantly, we found that the expression of MAFG (a binding partner of NRF2) was correlated with the expression of ARE
genes, suggesting MAFG levels may limit target gene induction. Bioinformatically we identified single nucleotide
polymorphisms (SNPs) in putative ARE genes and to test the impact of genetic variation, we genotyped these putative
regulatory SNPs and other tag SNPs in selected NRF2 pathway genes. Sequencing MAFG locus, we identified 30 novel SNPs
and two were associated with either gene expression or lung cancer status among smokers. This work demonstrates an
analysis approach that integrates bioinformatics pathway and transcription factor binding site analysis with genotype, gene
expression and disease status to identify SNPs that may be associated with individual differences in gene expression and/or
cancer status in smokers. These polymorphisms might ultimately contribute to lung cancer risk via their effect on the airway
gene expression response to tobacco-smoke exposure.
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Introduction

Approximately 1.3 billion people smoke cigarettes worldwide,

contributing to almost 5 million preventable deaths per year [1].

Smoking is a significant risk factor for lung cancer, the leading cause

of cancer-related death in the United States, and chronic obstructive

pulmonary disease, the fourth leading cause of death overall [2]. Even

with the high attributable risks due to cigarette smoke exposure, only

10–15% of all smokers develop lung cancer [3], suggesting genetic

variability may play a role in susceptibility to lung cancer. Lack of

knowledge of the genetic basis of lung cancer prevents accurate

prediction of smokers with the highest risk. However, rapid advances

in high-throughput genomics techniques, especially gene expression

profiling and single nucleotide polymorphism (SNP) genotyping,

show promise for characterizing risk. Understanding how genetic

variation influences smoking-induced gene expression in the lung and

airway could reveal susceptibility factors.

Previous studies have demonstrated that cigarette smoke

exposure creates a ‘‘field of injury’’ in airway epithelial cells

(reviewed in [4]). Spira et al [5] have measured whole-genome

gene expression profiles in epithelial cell brushings collected at

bronchoscopy from the mainstem bronchus of healthy smokers

and never smokers,. Smoking-induced gene expression was

observed for genes involved in regulation of oxidant stress,

xenobiotic metabolism, and oncogenesis, while genes involved

in inflammation and tumor suppression pathways were down

regulated. Recently, using a similar approach, an 80-gene

biomarker was developed to help diagnose individuals with lung

cancer among a group of smokers having a bronchoscopy due

to suspicion of lung cancer [6,7]. Profiles of histologically

normal large-airway epithelial cells obtained at bronchoscopy

were effectively used as an early diagnostic lung cancer

biomarker, with an accuracy of 83%. These observations

reveal airway gene-expression differences among individuals in
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response to smoking, but do not point to the molecular

mechanisms that contribute to the heterogeneity in this gene-

expression response.

Human genetic variability in the response to environmental

exposure is generally accepted as an important determinant in

susceptibility to cancer [8]. However, a challenging problem in

association studies is interpreting if statistical evidence of

genotype–phenotype/disease correlation is biologically plausible.

Often the relationship between specific single nucleotide poly-

morphisms (SNPs) and gene expression or activity has been

difficult to study in vivo. Examining SNPs in transcription factor

pathways and specifically, in transcription factor binding sites, in

relationship to gene expression is an approach that can yield

functional information [9]. Recently, cis-acting regulatory SNPs

have been discovered using a regional association approach

[10,11]. To better understand these functional relationships that

contribute to in vivo differences in gene expression and possibly to

lung cancer susceptibility, we have used a three-part approach to

test associations between: (1) gene expression and lung cancer

status, (2) SNP genotype and gene expression, and (3) SNP

genotype and lung cancer status.

Using the approach described by Spira et al [7], we assessed

global gene expression in cytologically normal airway epithelial

cells obtained by bronchoscopy from smokers with suspicion of

lung cancer and from a control group of never smokers. We

identified that the antioxidant response pathway regulated by the

transcription factor NRF2 (nuclear factor erythroid-derived 2-like

2, or NFE2L2) differed among these groups of subjects. We found

that the expression of MAFG (a binding partner of NRF2) was

correlated with the expression of NRF2 pathway genes. We used

bioinformatics strategies to identify putative regulatory SNPs in

NRF2 binding sites [9,12,13] and to select tag SNPs for NRF2-

mediated genes. Additionally, we sequenced the MAFG locus in

our study subjects. Gene expression, genotype and lung cancer

status was integrated and compared, and we identified SNPs that

were associated with individual differences in gene expression

and/or cancer status.

Results

Cigarette smoking, lung cancer and the bronchial airway
transcriptome

With the aim of identifying potential functional SNPs and/or

haplotypes in antioxidant response pathways associated with

smoking-induced lung cancer, we used a three-part approach to

analyze the associations between: 1) gene expression and lung

cancer status; 2) gene expression and genotype of SNPs selected by

several bioinformatics strategies, and 3) SNP genotypes and lung

cancer status. The overall workflow of our approach is outlined in

Figure 1.

Bronchial airway epithelial cells were obtained by flexible

bronchoscopy from 8 healthy never-smokers (NS) and from

smokers enrolled in a diagnostic study for clinical suspicion of lung

cancer including 20 smokers with lung cancer (SC), and 24

smokers without lung cancer (SNC) (Table 1). These subjects were

a subset two larger gene expression projects [5,7] for whom we

could obtain sufficient genomic DNA for genotyping. Expression

data for 31 subjects from these projects [5,7] and data for an

additional 21 newly recruited patients were used. Using Affymetrix

HG-U133A microarrays, we found 11285 probe-sets expressed at

measurable levels (detection p-value , = 0.05 in at least 20% of

individuals in either of SC, SNC, or NS), which corresponded to

8159 protein-coding RefSeq genes based on Affymetrix annotation

(HG-U133A.na28.annot.csv, March 2009).

To examine the differential responses to the effect of cigarette

smoking on the bronchial airway transcriptome, we used profiles

from never-smokers as baseline and compared the average log2-

expression values of SC or SNC with that of NS by t-test, followed

by multiple testing correction (Benjamini-Hochberg false discovery

rate, FDR [14]). Compared with never-smokers, we found

differential expression (FDR 0.1) for 846 probe-sets (774 genes) in

smokers without cancer, and 919 probe-sets (834 genes) in smokers

with cancer. We next classified smoking-dependent genes into over-

expressed (fold change .1.2) and under-expressed (fold change

,0.8) genes. In smokers without cancer, there were 210 probe-sets

over-expressed and 628 probe-sets under-expressed; in smokers

with cancer, there were 263 probe-sets over-expressed and 644

probe-sets under-expressed, compared with never-smokers. The list

of probe-sets, average log2-expression values, and statistical values

are included in the Supporting Information S1.

Functional enrichment analysis of smoking affected gene
expression signatures

To identify sets of related genes with common biological function,

we analyzed expression profiles using Gene Set Enrichment

Analysis (GSEA) [15], Ingenuity pathway analysis (IPA), and Gene

Ontology enrichment analysis (GOEA). GSEA tested whether any a

priori defined canonical pathways were enriched among differen-

tially expressed genes in the groups. We were particularly interested

in differences between the cancer and no cancer groups. We found

that two gene sets were enriched in SNC versus NS, at the FDR 0.1

level. The first gene set was the ‘‘antioxidant response element

genes’’ (curated and published previously [9]), with a normalized

enrichment score (NES) of 2.04 and a FDR q-value of 0.021; the

second gene set was the ‘‘actin Y pathway’’ (NES = 1.87, q-

value = 0.077). Two gene sets were enriched in NS, including

‘‘Histidine metabolism’’ (NES = 1.93, q-value = 0.082) and ‘‘RAR/

RXR pathway’’ (NES = 1.84, q-value = 0.093). No gene set was

enriched at FDR 0.1 or 0.25 level in SC compared to NS. We also

observed no enriched gene set in comparing SNC versus SC at the

FDR 0.1 level, however we found 4 gene sets enriched at the FDR

0.25 level, the most significant gene set was ‘‘antioxidant response

element genes’’ (NES = 1.86, q-value = 0.120). These results

suggested that the set of ‘‘antioxidant response element genes’’

were significantly enriched in SNC but not in SC.

We also used IPA to test for enriched canonical pathways using

lists of over-expressed or under-expressed probe-sets and deter-

mining the relative weight of identified pathways in the different

phenotype groups. For the 210 over-expressed probe-sets between

SNC and NS, six pathways were significant (Figure 2A), including

‘‘NRF2-mediated oxidative stress response’’, ‘‘hypoxia signaling in

cardiovascular system’’, ‘‘TR/RXR activation’’, ‘‘aryl hydrocar-

bon receptor signaling’’, ‘‘integrin signaling’’, and ‘‘eicosanoid

signaling’’. GSEA and IPA represent two distinct functional

enrichment methods that are based on independent knowledge

databases and different statistical tests. Both identified the NRF2

pathway as the most enriched pathway, demonstrating consistency

between these methods. Most importantly, using IPA, for over-

expressed genes we observed a very pronounced difference in the

significance level of ‘‘NRF2-mediated oxidative stress pathway’’

between SNC and SC (Figure 2A). Furthermore, Gene Ontology

analysis also supported the role of oxidative stress genes among

over-expressed genes in SNC. There were 15 GO terms enriched

from over-expressed genes at FDR 0.1 level in SNC and all of

them were molecular function terms for antioxidant response

genes (Supporting Information S1); however, no GO terms were

enriched among over-expressed genes in SC. Thus the three

Antioxidant Gene Variation
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Figure 1. The workflow for examining the relationship between gene expression variation and genetic variation in the NRF2-
mediated antioxidant response pathway associated with smoking exposure and lung cancer. (A) We assessed microarray gene
expression profiles of histologically normal airway epithelial cells obtained by bronchoscopy from smokers with suspicion of lung cancer and from a
control group of never smokers. (B) We identified that the antioxidant response pathway regulated by the transcription factor NRF2 differed among
these groups of subjects. We found that the expression of MAFG (a binding partner of NRF2) was correlated with the expression of NRF2 pathway
genes. (C) Bioinformatics strategies were used to identify putative regulatory SNPs in NRF2 binding sites and to select tagging SNPs for NRF2-
mediated genes. (D) The MAFG locus was sequenced in our study subjects. We identified SNPs that were associated with individual differences in: (E)
gene expression and/or (F) cancer status by integrating gene expression, genotype and lung cancer status.
doi:10.1371/journal.pone.0011934.g001
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bioinformatic analyses support a role for NRF2 pathway genes in

the group without cancer but not in the lung cancer group.

Correlation of MAFG with the expression of antioxidant
response genes

Functional enrichment methods strongly implicated the signifi-

cance of NRF2 pathway (defined by genes containing antioxidant

response elements (AREs) in the upstream regions). As a result, we

examined this group of genes more closely. Under oxidative or

electrophilic stress, NRF2 is released from its interaction with KEAP1

and translocates to the nucleus, where it heterodimerizes with small

MAF proteins such as MAFG, and then binds ARE sequences

upstream of NRF2 target genes [16]. NRF1, NRF3, and BACH1 can

compete with NRF2 to bind with MAFG at ARE sites, potentially

leading to decreased ARE-mediated gene expression [17,18,19].

Figure 2B displays the mRNA levels of the interacting regulatory

protein components of the NRF2 pathway. Compared with NS, we

found no significant difference in the master regulator NRF2 between

either SNC or SC. However, we found significant difference in the

competitor NRF1 and the binding partner MAFG that are consistent

with a role in regulation of the downstream target genes (Figure 2B).

NRF1 was significantly higher (fold change = 1.23, p = 0.0115 for SC

versus SNC; and fold change = 1.54, p = 0.0084 for SC verse NS, by

t-test). The change in NRF1 expression in this process supports the

role for NRF1 proposed by Wang et al [20] and Ohtsuji et al [16], who

demonstrated that NRF1 binding to AREs in vivo repressed ARE-

dependent gene expression and modulated response to oxidative

stress. That is, NRF1 was observed to be anti-correlated with

expression of NRF2 pathway genes. MAFG was lower in SC

compared to NS or SNC (fold change = 0.55, p = 0.0022 for SC

versus SNC, and fold change = 0.60, p = 0.0076 for SC versus NS,

by t-test). No significant changes were found in NRF3, KEAP1, and

BACH1 mRNA (Figure 2B). As expected based on the IPA and

GSEA results, we found that 22 ARE-regulated genes were different

between groups, and correlated with MAFG levels (lower in SC but

higher in SNC, Figure 2C). NRF2 target genes shown in Figure 2C

(AKR1C1, AKR1C2, ALDH3A1, CBR1, FTH1, FTL, GCLM,

GCLC, GPX2, NQO1, PIR, PRDX1, PSMA3, SAT1, SLC7A11,

SOD1, SQSTM1, TALDO1, TKT, TXN, TXNRD1, and

UGT1A6) were induced among SNC but were consistently lower

in the SC patients. This novel observation suggests that reduced levels

of MAFG and higher levels of NRF1 (negative regulator) may be

suppressing the transcription of these ARE-regulated genes among

smokers who go on to develop lung cancer.

We re-examined a larger, previously published dataset [7] and

also found significantly lower MAFG levels in smokers with lung

cancer (n = 90) compared with that in smokers without cancer

(n = 97) (Supporting Information S1). Further evidence for a

regulatory role for MAFG in airway epithelial cells is emerging. In

a related project, cigarette smoke-induced airway expression of

MAFG has been observed to be regulated by the microRNA miR-

218 [21]. We explored the impact of MAFG expression level on

downstream NRF2-pathway genes. Figure 3A displays MAFG

siRNA knockdown in the A549 cell line. Figure 3B shows that

MAFG silencing leads to attenuated expression of GCLC, NQO1,

SLC7A11, TXNRD1 (all ARE genes). We hypothesize that

reduced MAFG levels and the subsequent reduction in the

protective oxidative stress response may represent a gene

expression hallmark in bronchial epithelial cells of smokers who

develop lung cancer. However, the pattern of gene expression over

time (duration of smoking) could be important and recent smoking

among the current smokers might influence some of the patterns

that we observe in the bronchial epithelial cells.

SNP selection, genotyping and MAFG sequencing
In order to examine if genetic variation was contributing to

airway gene expression differences, we used a bioinformatics

strategy to identify SNPs in potential NRF2 binding sites [9,13]

and also identify tagging SNPs for several genes involved in the

NRF2-mediated anti-oxidant response pathway. The gene and

SNP list is included in the Supporting Information S1. After

genotyping, about 77% (348 SNPs) of the identified SNPs passed

the initial quality control criteria (genotyping rate = 90%, MAF

threshold = 0.01 and Hardy-Weinberg equilibrium p-value

threshold = 0.001, GenTrain score 0.25) but we only examined

312 SNPs with allele frequencies $0.05 in the 52 subjects.

Expression analysis suggested that MAFG levels could poten-

tially be rate-limiting in the expression of antioxidant response

genes. To better evaluate if sequence variability in the MAFG

gene affected gene expression, we sequenced a 16.5-kb genomic

region (chr17:77,467,438-77,483,879) in our study subjects. This

region was from 5000-nt upstream of the transcription start site to

2000-nt downstream of MAFG’s transcription end site, covering

introns, exons and untranslated regions. We discovered 33 SNPs

in this region, including 1 coding SNP, 16 SNPs in 39 UTR, and 3

SNPs in introns, and 13 SNPs in upstream. The location, allele

frequency and linkage disequilibrium (LD) is included in

Supporting Information S1. Comparing this information with

the NCBI dbSNP build 130 (May 2009), we found that only 3 of

these SNPs had been previously reported.

Association analysis of SNP genotype and gene
expression

We performed linear regression between normalized log2-

transformed gene expression values and genotypes of SNPs that

Table 1. Demographic characteristics of the study population.

Parameters
Never smokers
(n = 8)

Smokers without cancer
(n = 24)

Smokers with cancer
(n = 20)

Difference between Cancer/No
Cancer

Age
(years)

3269 53618 68615 p,0.05 by t-test

Smoking history
(packs/year)

0 52653 58628 p = 0.63 by t-test

Gender
(female:male)

3 : 5 2 : 22 4 : 16 p = 0.13 by Fisher’s exact test

Race (AFA:ASI:CAU:HIS:OTH)* 0:0:6:1:1 6:3:13:1:1 2:0:18:0:0 p = 0.07 by Fisher’s exact test

*AFA = African American; ASI = Asian; CAU = Caucasian; HIS = Hispanic; OTH = Other.
doi:10.1371/journal.pone.0011934.t001
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were near each gene (SNP position within 10-kb of a gene’s

upstream, coding, and downstream regions). Statistical significance

was evaluated using 10,000 permutations of expression values

relative to the genotypes as previously described by Stranger et al

[22] with a corrected p value threshold of 0.05. In 44 smokers,

from among 338 detectable probe-sets (213 genes) nearby our

selected 312 SNPs, we found significant association between 26

SNPs and 29 probe-sets (25 genes, listed in Table 2). Among these

are 21 putative ARE SNPs and 6 known ARE genes, including

AKR1C1, AKR1C2, AKR1C3, EPHX1, FTL, and HMOX1.

We found a cluster of SNPs associated with expression of 3

adjacent NRF2-regulated genes, AKR1C1, AKR1C2 and

AKR1C3 (Figure 4). We genotyped 25 tag SNPs in this genomic

region. SNP rs12414884 is located -3792-nt upstream of AKR1C2

and was associated with the expression of all 3 genes. Two SNPs,

rs17134158 and rs10904392, which are 1768-nt and 4715-nt away

from rs12414884 respectively, were associated with the expression

of AKR1C1 and AKR1C2. Further linkage disequilibrium

analyses indicated these 3 SNPs were in linkage (r2.0.8). We

also tested the association between newly identified SNPs in

MAFG and MAFG gene expression. The promoter SNP at

chr17:77482956 (-4077, A/C, minor allele freq = 0.09) was

associated with MAFG expression (p_corrected = 0.0038).

Although our focus was the association between genotype and

expression in all smokers in the study, we also examined the

difference in associations between SC and SNC groups. This type

of exploratory analysis could reveal SNP effects, that might be

related to differential susceptibility in smokers. An association was

found between expression and a putative ARE SNP rs3753660 at -

199-nt of epoxide hydrolase 1 (EPHX1) gene (Figure 5A). The

association was strongest among SNC and the effect of the SNP

appears to be quite different between the two groups (Figure 5A

and Table 2). Human EPHX1 has two putative AREs (including

the polymorphic ARE), but EPHX1 expression did not follow the

pattern as displayed by many other ARE genes in Figure 2C. The

C allele of rs3753660 was predicted to have lower NRF2 binding

and we observed it was associated with lower expression in SNC.

This suggests a possible interaction between the genetic variant,

expression and the group phenotype. DUSP1 also had a putative

ARE SNP rs17658295 associated with its expression (Figure 5B).

The minor allele was significantly associated with higher

expression and the significance level was more pronounced in

the cancer group.

A few SNPs were associated with expression of known ARE genes

among all 52 subjects but not within all smokers. For example, two

SNPs (rs670548 and rs2397146) in the glutamate-cysteine ligase

catalytic subunit (GCLC) gene that were not in LD (r2 = 0.28), were

independently associated with expression (Figure 5C). Interestingly,

the minor allele of rs670548 (in intron) was associated with low

expression while the minor allele of rs2397146 in 59 upstream

region was associated with high expression (Figure 5D), suggesting

the possibility of two distinct allelic phenotypes. Variation in GCLC

Figure 2. Pathway analysis and NRF2 pathway gene expression. (A) Ingenuity Pathway Analysis revealed differential effects of cigarette
smoking in smokers without cancer (SNC) and smokers with cancer (SC) relative to nonsmokers (NS). Six canonical pathways were significant enriched
in the 210 over-expressed probe-sets when comparing SNC with NS (blue bars). Three pathways were significantly enriched in the 263 over-expressed
probe-sets when comparing SC versus NS (red bars). We observed a very pronounced difference in the significance level of ‘‘NRF2-mediated oxidative
stress pathway’’ between SNC and SC. (B) The mRNA levels of the interacting, regulatory components of the NRF2 pathway displayed as boxplots. A
boxplot depicts a dataset through five-number summaries: the smallest observation, lower quartile, median, upper quartile, and largest observation.
Compared with NS, the master regulator NRF2 showed no difference between SNC and SC. However, the binding partner MAFG was significantly
lower in SC, and the competitor NRF1 was significantly higher in SC. NRF3, KEAP1, and BACH1 mRNA showed no significant changes. (C) We observed
that 22 genes with known NRF2 binding sites showed significant differences among the groups at FDR 0.1 level. Consistently, the expression of these
genes in SNC was higher than that in NS; and most of these genes have lower expression in SC than that in SNC. This pattern was similar to MAFG
expression pattern.
doi:10.1371/journal.pone.0011934.g002

Figure 3. MAFG silencing attenuates downstream antioxidant and Phase II gene expression. Following transient transfection with MAFG
siRNA in the A549 airway cell line, gene expression was measured using real-time qPCR. Transfection with scrambled control siRNA produced a
general increase in NRF2 pathway genes (black bars) relative to nontransfected cells (set at 100%). (A) MAFG gene expression was significantly
reduced (55%) compared to non-specific siRNA control. (B) GCLC, NQO1, SLC7A11, and TXNRD1 gene expression was significantly reduced with
MAFG silencing compared to non-specific siRNA controls. * (p#0.05, t-test). All data presented as mean 6 SEM (n = 3).
doi:10.1371/journal.pone.0011934.g003
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Table 2. Association of SNP genotype and gene expression (sorted on SNP class and gene symbol).

SNP Probe-set

p-value among all
52 subjects
(SC+SNC+NS)

p-value among
all smokers
(SC+ SNC)

p-value
in SC

p-value
in SNC SNP location Symbol SNP class

Significant in smokers (SC+SNC) and one sub-group(SC or SNC)

rs12414884 204151_x_at 0.0066 0.0096 downstream AKR1C1 * tagSNP

rs12414884 216594_x_at 0.0051 0.0176 downstream AKR1C1 * tagSNP

rs12414884 209699_x_at 0.0033 0.0059 upstream AKR1C2 * tagSNP

rs10904392 209699_x_at 0.0216 0.0221 upstream AKR1C2 * tagSNP

rs17134158 211653_x_at 0.0176 0.0391 upstream AKR1C2 * tagSNP

rs12414884 209160_at 0.0383 0.0368 upstream AKR1C3 * tagSNP

rs12105811 209939_x_at 0.0054 0.0062 0.0148 intron CFLAR ARE SNP

rs12105811 209508_x_at 0.035 0.0421 intron CFLAR ARE SNP

rs3810427 206153_at 0.0499 0.0412 0.0483 upstream CYP4F11 ARE SNP

rs6588537 200862_at 0.0164 0.0288 0.0479 upstream DHCR24 ARE SNP

rs17658295 201041_s_at 0.0138 0.0046 0.0111 upstream DUSP1 ARE SNP

rs3753660 202017_at 0.0206 0.0309 0.0017 upstream EPHX1 * ARE SNP

rs17883018 203665_at 0.0191 0.0249 0.0352 intron HMOX1 * ARE SNP

rs3756273 211548_s_at 0.0056 0.017 0.0081 upstream HPGD ARE SNP

rs35258303 219212_at 0.0108 0.0176 0.0202 upstream HSPA14 ARE SNP

rs2071204 209100_at 0.0405 0.0109 0.012 upstream IFRD2 ARE SNP

rs2256974 215633_x_at 0.048 0.0232 0.0059 intron LST1 ARE SNP

rs7037941 204917_s_at 0.0047 0.0045 intron MLLT3 ARE SNP

rs10098474 219281_at 0.0294 0.0244 upstream MSRA ARE SNP

rs3762111 201602_s_at 0.0052 0.0294 0.0116 upstream PPP1R12A ARE SNP

Significant in smokers (SC+SNC)

rs35408448 202888_s_at 0.0436 0.0463 upstream ANPEP ARE SNP

rs12105811 211862_x_at 0.0406 Intron CFLAR ARE SNP

rs17047438 208896_at 0.0236 upstream DDX18 ARE SNP

rs4754450 203647_s_at 0.033 upstream FDX1 ARE SNP

rs10078827 222034_at 0.0475 upstream GNB2L1 ARE SNP

rs840466 215446_s_at 0.028 0.0139 upstream LOX ARE SNP

rs2658718 209861_s_at 0.0239 0.0273 upstream METAP2 ARE SNP

rs631744 202884_s_at 0.0451 0.0495 upstream PPP2R1B ARE SNP

rs337253 218989_x_at 0.0427 Intron SLC30A5 ARE SNP

rs10904392 216594_x_at 0.0215 downstream AKR1C1 * tagSNP

rs17134158 204151_x_at 0.05 downstream AKR1C1 * tagSNP

rs12414884 211653_x_at 0.0143 upstream AKR1C2 * tagSNP

rs17134158 209699_x_at 0.0262 upstream AKR1C2 * tagSNP

rs1805419 212788_x_at 0.0395 upstream FTL * tagSNP

rs737777 203665_at 0.0178 0.0131 downstream HMOX1 * tagSNP

MAFG upstream SNP 204970_s_at 0.0012 0.0037 upstream MAFG new SNP

Significant in all subjects(SC+SNC+NS)

rs504348 202805_s_at 0.0469 upstream ABCC1 * ARE SNP

rs2397146 202923_s_at 0.0387 downstream GCLC * tagSNP

rs670548 202923_s_at 0.0029 0.0476 upstream GCLC * tagSNP

MAFG 39UTR SNP 204970_s_at 0.0317 39UTR MAFG new SNP

The linear regression model was used to evaluate the association between log2-transformed expression values of a probe-set and genotypes of a SNP. An association
was considered significant if the p-value from the analysis of the observed data was lower than the threshold of the 0.05 tail of the distribution of the minimal p-values
from 10,000 permutations. Our focus was the association in all smokers (e.g. p-value in SC (n = 20) and SNC (n = 24), shown in bold fonts). We also tested the association
in all samples (including SC (n = 20), SNC (n = 24), and NS (n = 8)), and in sub-groups (ie.: SC, SNC), and the results are displayed below. Only p-values less that 0.05 are
displayed. Known ARE genes marked with *.
doi:10.1371/journal.pone.0011934.t002
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has previously been associated with low level of lung function in two

independent populations [23].

SNPs that may contribute to cancer status via gene
expression

To identify SNPs that might affect lung cancer via gene

expression we first used logistic regression to test the relationship

between cancer or non-cancer status and log2-transformed gene

expression levels. This identified 34 probe-sets (31 genes) in the

antioxidant response pathway that were associated with cancer

status of smokers at a corrected p-value , = 0.05. Notably, the

MAFG probe-set 204970_s_at was associated with ‘‘without

cancer’’ status (p = 0.0014) (Figure 6A). As outlined in Figure 6,

we reasoned that a SNP that affected gene expression might differ

in frequency among groups. While the statistical power for such a

comparison is low, we did observe such an effect for the MAFG

39UTR SNP mentioned previously (chr17:77469864; p = 0.058)

(Figure 6B–C). As shown in Figure 6, the GG genotype was

associated with the ‘‘without cancer’’ status of smokers

(p = 0.0199), and also marginally with the higher expression level

of MAFG. If these frequency differences could be substantiated in

larger groups of patients, they could indicate protective or risk

alleles and might be useful for predicting risk.

Discussion

There is an important heritable component to lung cancer [24]

and understanding how genetic variation alters smoking-induced

gene expression could provide genetic biomarkers for diagnosis

and reveal genetic susceptibility alleles. Numerous studies of

human airway [5,7,25,26]mouse lung [27] or in vitro cell culture

[28] have reported on gene expression signatures related to

smoking. Spira et al identified gene expression profiles in

cytologically normal large-airway epithelial cells that can serve

as a diagnostic biomarker for lung cancer [7]. The present work

identifies molecular and genetic features of the NRF2-regulated

pathway that are central to this airway gene expression response.

Using pathway analysis tools, we identified differences in NRF2-

mediated transcription profiles from bronchial airway epithelial

cells obtained from nonsmokers, cigarette smokers with suspicion

of lung cancer, and those with a subsequent diagnosis of lung

cancer. We also revealed a potential role for MAFG (a NRF2-

binding partner) in modulating smoking-induced gene expression.

Figure 4. SNPs associated with the expression of 3 known ARE genes, AKR1C1, AKR1C2, and AKR1C3 among smokers. We genotyped
25 SNPs in the genomic region containing AKR1C1, AKR1C2, and AKR1C3. In each plot of expression verse genetype, circles were log2 expression, and
lines were linear regression trend lines. The genotypes of SNP rs1241488 associated with the expression levels of all 3 genes. The genotypes of SNP
rs1090439 associated with the expression levels of AKR1C1 and AKR1C2. Note: The SNP rs17134158 only had 2 genotypes AG and GG in smokers, but
did have AA genotype in NS and its overall minor allele frequency .0.05. Linkage disequilibrium analyses indicated these 3 SNPs were in linkage
(r2.0.88).
doi:10.1371/journal.pone.0011934.g004
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NRF2 is activated by oxidative stress and translocates to the

nucleus where it heterodimerizes with small MAF proteins to form a

transactivation complex that binds to specific DNA regions termed

antioxidant response elements (ARE) [29] and up-regulates

antioxidant and phase II detoxification enzymes. We examined

the expression of NRF2 and its interacting partners (e.g. MAFG,

NRF1, NRF3, and BACH1) and made a novel observation that

MAFG expression was strongly correlated with expression of

downstream NRF2 target genes. At present, there are 42 NRF2

target genes discovered in various human tissues, and we found 22

of them correlated with MAFG gene expression level in human

airway epithelial cells. In addition, NRF1, a negative and

competitive regulatory factor, was anti-correlated with downstream

antioxidant gene expression. The possibility that MAFG expression

might limit downstream antioxidant gene expression was explored

further. Silencing MAFG with siRNA in A549 cells attenuated the

expression of known ARE genes (Figure 3B) and this was consistent

with published experiments in MafG knockout mice [29]. A similar

pattern for MAFG expression relative to other antioxidant genes

was found when we carried out a retrospective analysis of expression

data from a related, previously-published, larger-scale study [7]. We

pursued a possible genetic cause for reduced MAFG expression

among the SC group by re-sequencing MAFG in the subjects in this

study and uncovered more than 30 novel SNPs in the 16.5-kb

Figure 5. Plots of association between SNP genotype and gene expression for selected SNPs. In each plot, SC, SNC and NS are colored
with red, blue, and black, respectively. (A) The association of a putative ARE SNP rs3753660 in the promoter of EPHX1 gene displays distinct trends in
SC and SNC; (B) DUSP1 putative ARE SNP rs17658295 associated with its expression. The minor allele was significantly associated with higher
expression and the significance level was more pronounced in the cancer group; C) GCLC intronic SNP rs670548 minor allele associated with lower
expression among all subjects; (D) GCLC 39 downstream SNP rs2397146 minor allele associated with higher expression among all subjects.
doi:10.1371/journal.pone.0011934.g005
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MAFG region. A SNP at chr17:77482956 in the MAFG promoter

region was associated with lower MAFG mRNA levels, while

another in the 39 UTR displayed a marginal association with

expression and lung cancer status (Figure 6). Thus some of the

variability in gene expression among groups may be due to genetic

variation, but it is also likely that other regulatory mechanisms, as

well as the timing and duration of cigarette smoking in these patients

have affected MAFG levels.

To explore how genetic variation in other NRF2 pathway genes

might contribute to smoking-induced lung cancer disease suscep-

tibility, we tested the association of many genotypes with both

expression and/or group phenotype. We observed possible cis-

acting effects for putative regulatory SNPs on genes affected by

cigarette smoking and these could impact susceptibility of the

airway to smoking-related diseases through various mechanisms,

including metabolism of carcinogens. For example, members of

the aldo-keto reductase (AKR) superfamily, AKR1C1, AKR1C2,

and AKR1C3, catalyze the conversion of aldehydes and ketones to

their corresponding alcohols by utilizing NADH and/or NADPH

as cofactors. Polymorphisms of AKR1C3 have been implicated in

susceptibility to various types of cancer, including lung cancer

[30,31,32]. Microsomal epoxide hydrolase 1 (EPHX1) plays an

important role in both the activation and detoxification of

tobacco-derived carcinogens. Polymorphisms at exons 3 and 4 of

the EPHX1 gene have been associated with variation in EPHX1

activity and a low-activity genotype of EPHX1 gene was

associated with decreased risk of lung cancer among whites [33].

While the associations we found in this hypothesis-generating

study were modest and need to be confirmed by follow-up in

larger studies, we suggest that this approach may prove useful for

identifying functional SNPs that contributing to a phenotype via

an impact on gene expression.

Disease-association studies, both candidate gene-based and genome-

wide association studies (GWAS), have identified genetic variants that

associate with both monogenic and complex diseases like lung cancer.

Recently several genomic regions that may affect nicotine metabolism

or dependency in lung cancer patients were identified by GWAS with

very high statistical significance [34,35]. Presumably individuals with

these genetic traits may use more tobacco and receive higher doses of

the carcinogenic compounds in cigarette smoke. However, while the

variants identified in the lung cancer GWAS studies, and in many

other GWAS, point to potentially important loci, the functional

relationship between the SNP and a molecular genetic mechanism to

explain the biological phenotype is not apparent. Thus, understanding

Figure 6. An example of how our three-part approach for association analysis of expression, genotype, and phenotype data may
reveal biologically plausible SNPs. The MAFG 39UTR SNP at chr17:77469864 may potentially contribute to phenotype (lung cancer status) via
gene expression, based on: (A) Expression of MAFG was higher in smokers without cancer than that in smokers with cancer; (B) Genotype GG displays
a trend toward higher expression levels of MAFG (#, black line); slopes of genotype by expression plots differ between groups (* red dotted line vs
blue dotted line); (C) Genotype GG, associated with higher expression, was more common in smokers without cancer; (D) Hypothesis. Individuals with
genotype GG display higher MAFG expression in bronchial epithelial cells; MAFG expression higher in smokers without cancer suggesting it is
protective against lung cancer; GG genotype is less frequent among cancer group, consistent with a protective effect.
doi:10.1371/journal.pone.0011934.g006
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the molecular genetic basis of human phenotypic variation still remains

a major challenge for genetics.

The approach we have used integrates information about gene

expression in target tissue, variation in transcription factor binding

sites and genotype frequency among cancer status groups in order

to identify biologically-plausible functional polymorphisms. It

could be generally useful for identifying SNPs that contribute to

disease risk through their impact on gene expression. While the

present study is limited by statistical power, applying this method

to larger studies of exposed-tissue samples from clinically

characterized patients may reveal useful expression-based and/

or genetic biomarkers and provide a basis for prevention efforts.

Materials and Methods

Study population
Previously we recruited a group of healthy never smokers (,100

cigarettes in their lifetime; no second hand smoke) to undergo

bronchoscopy at Boston University Medical Center [5], as well as a

cohort of current and former smokers who were undergoing

bronchoscopy as a diagnostic study for clinical suspicion of lung

cancer at four institutions: Boston University Medical Center, Boston

Veterans Administration, Lahey Clinic and St. James’s Hospital [7].

Ethics Statement
The study was approved by the Institutional Review Boards of

all medical centers, and all participants provided written informed

consent.

Airway epithelial cell collection
Clinical subjects in the latter cohort were classified as either

having lung cancer if their bronchoscopy or subsequent lung

biopsy yielded lung tumor cells or not having lung cancer if the

bronchoscopy or subsequent lung biopsy yielded a non-lung-

cancer pathology (or if their radiographic abnormality resolved on

follow-up chest imaging). Bronchial airway epithelial cells were

obtained from the uninvolved right mainstem bronchus with an

endoscopic cytobrush (Cellebrity Endoscopic Cytobrush, Boston

Scientific). RNA was extracted and its integrity and epithelial cell

content was confirmed as described previously [7].

Individuals with final diagnoses as of July 2008 and with blood

genomic DNA for genotyping were included in this study,

consisting of 20 smokers with lung cancer (SC), 24 smokers

without lung cancer (SNC), and 8 never-smokers (NS) (Table 1).

We observed significant differences in age between SC and SNC

groups (p,0.05 by t-tests); no significant difference in gender,

race, or cumulative tobacco exposure was found between SC and

SNC groups. Because age was significantly different between these

groups of patients, we tested the association between log2-

expression values and age using linear regression. At the False

Discovery Rate (FDR) 0.1 level, we found that 12 probe-sets (11

genes) correlated level with age (Supporting Information S1), and

these probes were excluded from further analysis.

Microarray data acquisition and preprocessing
Approximately eight micrograms of total RNA was processed,

labeled and hybridized to Affymetrix HG-U133A GeneChips

containing 22,283 probe-sets as described previously [7]. The MAS

5.0 algorithm was used for background adjustment, normalization,

and probe-level summarization of microarray data [36].

GEO accession number
All microarray data have been submitted to the Gene

Expression Omnibus (GEO) under accession number GSE 19027.

Gene set enrichment analysis (GSEA)
GSEA is a computational method [11,37] that determines

whether any a priori defined set of genes were enriched at the top or

bottom of a list of genes ordered on the basis of expression

difference between two biological states (e.g. phenotypes). It takes

normalized array intensity values, rank genes according to score

(e.g., signal-to-noise) between phenotype groups. It then walks

through the ranked list of genes to calculate Enrichment Score

(ES) for a gene set. In this study, we focused on the canonical

pathways, i.e.: the c2.cp library of ‘‘molecular signature database’’

of GSEA software (v2.0.4), which included 639 curated gene sets

(canonical pathways) from online pathway databases, publications

in PubMed, and knowledge of domain experts. In addition, we

tested a set of ‘‘antioxidant response element genes’’, which

included 37 human genes that have bona fide NRF2 binding sites

(or antioxidant response elements), curated by mining PubMed

database [9].

Ingenuity Pathway Analysis (IPA)
IPA is software for identifying pathways most relevant to

experimental datasets (http://www.ingenuity.com). Genes from

the data set that met the FDR cutoff (q#0.1) and were associated

with biological functions in the Ingenuity Pathways Knowledge

Base were considered for analysis. Fisher’s exact test was used to

determine the probability that each biological function assigned to

that data set was due to chance alone.

NRF2 gene silencing and gene expression analysis
We silenced MAFG in A549 cells by transiently transfecting small

interfering RNA (siRNA) targeted to MAFG mRNA. Cells at 90%

confluence were transfected with 0.4 mM siRNA (MAFG, ID# s8419

or control, ID# 4390843, Ambion) in the presence of 4.7 ml

Lipofectamine 2000 transfection reagent (Invitrogen) for each well of

a 6-well plate. We incubated transfected cells in antibiotic-free Ham’s

F12K without serum for 24 h before cell lysate collection. RNA was

collected using RNeasy kit (Qiagen), including DNase treatment, and

reverse transcribed using Superscript II cDNA synthesis kit

(Invitrogen), following manufacturer’s instructions. NQO1, GCLC,

TXNRD1, MAFG, and ACTB (beta actin) gene expression levels

were measured using TaqMan assays (Applied Biosystems). For

SLC7A11, we designed expression primers using Primer3 (Rozen

and Skaletsky 2000) (fwd primer 59- GGCTGCCTTCCC-

TGGGCAAC-39, rev primer 59- CAGCAGTAGCTGCAG-

GGCGTA-39) and assayed using SYBR green (Applied Biosystems).

For real time analysis we performed 40 PCR cycles using 15 seconds

95uC melting temperature and 1 minute 60uC annealing/extension

temperature per cycle and measured fluorescence intensity with an

ABI 7900HT and calculated initial fluorescence (Ro value) of each

amplified sample using the method described by Peirson and

colleagues (Peirson et al. 2003). We normalized all target values with

ACTB mRNA values. Experiments were performed in triplicate;

PCRs were carried out in triplicate and values are reported as mean

6 standard error of the mean (SEM).

SNP identification in MAFG locus by sequencing
A 16.5-kb genomic region of the MAFG locus, starting 5000-nt

upstream of the transcription start site and ending 2000-nt from

the transcription end site was sequenced. Briefly,30 primer sets

were designed to amplify the MAFG region in DNA from 52 study

participants. After amplification, bidirectional sequencing of

amplicons was carried out with an ABI DNA sequencer (Applied

Biosystems, Foster City, California). The SNPs were detected by

PolyPhred software developed by University of Washington.
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Tag SNP selection
Tag SNPs were selected based on Hapmap genotyping data on

60 unrelated CEU individuals (U.S. Utah residents with ancestry

from northern and western Europe), using the Tagger software

[38] implemented in Haploview software [39]. An r2 threshold of

0.8, minor allele frequency threshold of 0.1 was used.

ARE SNP selection
SNPs in putative NRF2 binding sites (or AREs) were selected

using an approach developed by our group [9,13,40]. Briefly, we

constructed a position weight matrix (PWM) for NRF2 (ARE motif)

based on the collection of experimentally discovered AREs. We

then predicted AREs in the dbSNP entries using the PWM method

and mapped these SNPs to the upstream regions of genes. To select

the most likely functional AREs, we examined evolutionary

conservation by phylogenetic footprinting. Lastly, we prioritized

ARE candidate SNPs based on microarray expression profiles from

tissues in which NRF2 was either silenced or over-expressed.

SNP genotyping
Utilizing Illumina’s Assay Design Tool, we designed Illumina

GoldenGate assays for candidate SNPs (putative functional SNPs

and tag SNPs). DNA samples derived from whole blood were

subjected to whole genome amplification prior to genotyping.

Post-amplification DNA products were cleaned and genotyped

according to the manufacturer’s protocol on an Illumina

BeadStation 500G GoldenGate genotyping platform. Genotypes

were assigned using Illumina’s Beadstudio v3.0 Genotyping

software with GenTrain scores .0.25. A total of 450 SNPs,

including 342 SNPs located in putative binding sites of

transcription factor NRF2 and 108 tag SNPs for 16 known ARE

genes were placed on Illumina Golden Gate arrays and used to

genotype DNA from our study subjects.

Association analyses and multiple testing correction
A linear regression model was used to evaluate the association

between log2-transformed expression values of a probe-set and

genotypes of a SNP as previously described [10,22]. Fisher’s exact

test was used to evaluate the association between genotypes of a

SNP and phenotypes (lung cancer status in smokers); and a logistic

regression model was used to evaluate the association between

log2-transformed expression values of a probe-set and lung cancer

status in smokers. We performed 10,000 permutations of each

expression value or phenotype relative to the genotypes. An

association was considered significant if the p-value was lower than

0.05 as determined by the tail end of the distribution of the

minimal p-values from 10,000 permutations. All association tests

and permutations were performed using the PLINK software

(v1.0.6), an open-source whole genome association analysis toolset

[41], available at http://pngu.mgh.harvard.edu/purcell/plink/.

Other statistical analysis
All other statistical analyses were accomplished using the R

statistical software package (v2.8.0) and the SAS JMP statistical

discovery software (v7, SAS Institute Inc., Cary, NC). Gene

Ontology analysis was done through the GoMiner web interface

(http://discover.nci.nih.gov/gominer/), developed by National

Cancer Institute, Bethesda, Maryland [42].

Supporting Information

Supporting Information S1 Supporting Tables and Figure.

Found at: doi:10.1371/journal.pone.0011934.s001 (3.53 MB

DOC)
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